
VNU Journal of Science: Com. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78

66

Original Article

A Bandwidth-Efficient High-Performance

RTL-Microarchitecture of 2D-Convolution for Deep

Neural Networks

Nguyen Kiem Hung1, , Tran Quoc Long1

1University of Engineering and Technology, Vietnam National University, Hanoi, VietNam

144 Xuan Thuy Street, Cau Giay District, Ha Noi, Vietnam

Received 27 September 2022

Revised 03 February 2023; Accepted 13 March 2023

Abstract: The computation complexity and huge memory access bandwidth of the convolutional

layers in convolutional neural networks (CNNs) require specialized hardware architectures to

accelerate CNN’s computations while keeping hardware costs reasonable for area-constrained

embedded applications. This paper presents an RTL (Register Transfer Logic) level

microarchitecture of hardware- and bandwidth-efficient high-performance 2D convolution unit for

CNN in deep learning. The 2D convolution unit is made up of three main components including a

dedicated Loader, a Circle Buffer, and a MAC (Multiplier-Accumulator) unit. The 2D convolution

unit has a 2-stage pipeline structure that reduces latency, increases processing throughput, and

reduces power consumption. The architecture proposed in the paper eliminates the reloading of both

the weights as well as the input image data. The 2D convolution unit is configurable to support 2D

convolution operations with different sizes of input image matrix and kernel filter. The architecture

can reduce memory access time and power as well as execution time thanks to the efficient reuse of

the preloaded input data while simplifying hardware implementation. The 2D convolution unit has

been simulated and implemented on Xilinx's FPGA platform to evaluate its superiority.

Experimental results show that our design is 1.54× and 13.6× faster in performance than the design

in [1] and [2], respectively, at lower hardware cost without using any FPGA’s dedicated hardware

blocks. By reusing preloaded data, our design achieves a bandwidth reduction ratio between 66.4%

and 90.5%.

Keywords: 2D Convolution, RTL microarchitecture, Circle Buffer, Deep Neural Network, MAC,

Loader.

 Corresponding author.

 E-mail address: kiemhung@vnu.edu.vn

 https://doi.org/10.25073/2588-1086/vnucsce.596

mailto:kiemhung@vnu.edu.vn

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 67

1. Introduction

Recently, thanks to the availability of Big

Data and the rapid development of high-

performance computing systems, artificial

intelligence (AI) has been noticed and invested

heavily. Deep Learning is a technique widely

used in various AI applications. In the past

decade, deep learning has been successfully

applied to solve many problems in academia and

industry, such as image classification, object

detection and recognition, audio recognition,

disease diagnosis, and control of self-driving

cars [3].

Convolutional Neural Network (CNN) is one

of the commonly used deep learning algorithms

that provide high classification accuracy for

image and object detection and recognition [4].

Moreover, they can be easily applied to new

applications. However, CNN requires a large

amount of memory to store millions of

parameters in each CNN model. Furthermore,

CNNs are computationally intensive because

they require billions of operations per image.

The high computational complexity combined

with the parallelism inherent in these models

makes them a target for hardware acceleration.

There are two main challenges involved in

implementing hardware for CNNs. The first

challenge is the computational cost since their

architecture includes many layers of

convolution, each of which includes multiple

multiplications. The second challenge is huge

memory access bandwidth, where the speed of

loading data from memory is much lower than

the speed of processing. These two challenges

have increased the need to develop specialized

hardware architectures to accelerate CNN's

computation while keeping hardware costs

reasonable for area-constrained embedded

applications [5].

The 2D convolution is the most basic and

important operation in the convolutional layer of

the CNN network. According to statistics, this

operation consumes more than 90% of the total

computation time of CNN. Furthermore, the

convolution operation requires a large amount of

data to be loaded from memory or stored into

memory. Therefore, 2D convolution has always

been a focus in the optimization process when

designing hardware to accelerate CNNs. It will

be of great benefit if we can shorten the

computation time in these convolutional layers

to achieve the best CNN acceleration.

The 2D convolution of a matrix I of size

N×N and a kernel matrix W of size K×K can be

represented by equation (1):

O(x, y)=
−

=

−

=

1

0

1

0

K

m

K

n
I(x+m, y+n) × W(m,n) (1)

where, 0 ≤ x ≤ N – K and 0 ≤ y ≤ N – K.

Let set M = N – K + 1, which is the size of

the output matrix.

The process of calculating the convolution is

more explicitly described by the algorithm in

Fig. 1.

According to equation (1), the total data that

needs to be loaded from the input matrix to

complete the convolution is (K×K)×(N–K+1)×

(N–K+1). However, the input data actually

needed for the convolution is only N×N

(corresponding to the size of the input matrix). If

data repeatability can be exploited efficiently,

memory access bandwidth can be reduced while

also increasing convolution speed.

1

2

3

4

5

6

7

8

9

10

11

12

13

// traverse each row of the output matrix

For (x = 0; x < M; x++) do

// traverse each column of the output matrix

For (y = 0; y < M; y++) do

// traverse the rows of the kernel filter

For (m = 0; m < K; m++) do

// traverse the columns of the kernel filter

For (n = 0; n < K; n++) do

O(x, y) += I(x+m, y+n)×W(m, n)

End for

End for

End for

End for

Fig. 1. 2D convolution algorithm.

Fig. 2 shows an illustrative example of the

process of taking data from the input matrix to

compute the convolution between an input

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 68

image matrix with 6×6 size (i.e. N = 6) and a

kernel filter matrix with 3×3 size (i.e. K = 3).

Notice that in this figure the numbers in squares

represent the ordinal number of the elements in

the matrix. Each time a 3×3-submatrix (i.e.

yellow one) is extracted from the input matrix

and convoluted with the kernel filter matrix

according to equation (1) to produce an element

of the output matrix. There are 16 such

submatrices. As a result, after the convolution is

complete we get an output matrix with 4×4 size

as shown in Fig. 3. Notice that in this figure the

numbers in squares represent the value of the

element in the matrix. Notice that when

processing submatrices in the same Band in

order from left to right, between the two

convolution times, the submatrices differ only by

3 elements. Therefore, the 6 elements shared

between the 2 convolution times should be

stored in the convolution unit so that they do not

have to be reloaded from external memory.

Therefore, data reuse is an important

mechanism to improve performance and reduce

memory access bandwidth in hardware

implementation for CNNs.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Band
1

Band
2

Band
3

Band
4

Fig. 2. An example illustrating the process of accessing data from the input matrix.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 69

0 1 1×1 1×0 0×1 0

0 0 1×0 1×1 1×0 0

0 0 0×1 1×0 1×1 1

0 0 0 1 1 0

0 0 1 1 0 0

0 1 1 0 0 0

1 4 3 4

1 2 4 3

1 2 3 4

1 3 3 1

* =

1 0 1

0 1 0

1 0 1

I K I*K

Fig. 3. An Example of a convolution operation.

There are several methods to perform the 2D

convolution. The 2D convolution can be

performed through matrix multiplication by

converting the input matrix into a Toeplitz

matrix as done by Yiran Chen et al in [5].

However, the 2D convolution using matrix

multiplication introduces redundant data in the

Toeplitz matrix. Therefore, the 2D convolution

using matrix multiplication takes a long time if

performed in serialization, or requires a huge

memory access bandwidth if the operation is

performed in parallel. The 2D convolution can

be performed through the sliding window

method where a window is slid over the input

matrix to read out the submatrix that will be

convoluted with the kernel filter matrix. The

traditional sliding window method does not

exploit any data reuse resulting in loading some

input pixels and weights many times. Solutions

like that of Yu-Hsin Chen et al in [6],

recommend reusing input weights to avoid

having to reload them from off-chip memory

multiple times. In the [7], author Lin Bai et al

presented an architecture to reduce the latency of

the CNN network by reusing the input image

data. The architecture uses a Line Buffer to align

the input data with the filter weights therefore it

only supports input matrices and filters with the

fixed size that has been defined at the design

time. In the [8], author Anaam Ansari et al.

analyzed the redundant data in the 2D

convolution and then proposed an architecture

for 2D convolution to avoid reading the same

data from off-chip memory to on-chip memory

multiple times. In the [1], they have improved

the processing engine to compute all outputs of

the 2D convolution without having to reload any

input data. However, this technique results in a

hardware design that is relatively complex to

implement.

This paper proposes an RTL (Register

Transfer Logic) microarchitecture-level design

of a 2D convolution unit for convolutional neural

networks (CNN). The 2D convolution unit is

designed to efficiently exploit the data shared

between convolution operations to reduce

memory access bandwidth thereby reducing

power consumption while also taking into

account the complexity and cost of hardware

implementation. In addition, the design also

must have minimal memory requirements

compared to other designs. The

microarchitecture proposed in the paper

eliminates the reloading of both the weights as

well as the input data. The architecture can

compute the convolution of the input matrix and

kernel filter that have any size with low latency

and high throughput compared to other popular

techniques. The architecture can reduce memory

access time and power as well as execution time

through efficient reuse of input data.

From an architectural perspective, the 2D

convolution unit includes a dedicated Loader, a

Circle Buffer, and a MAC (Multiplier-

Accumulator) unit. The 2D convolution unit is

designed as a 2-stage pipeline structure to reduce

latency and power consumption but increase

throughput. More specifically, this paper

proposes a Loader’s structure that can directly

access memory and reads data in a configurable

pattern. The Loader allows data to be loaded

continuously and automatically from external

memory into the convolution unit without the

intervention of the central processing unit. In

another aspect, the paper also proposes a

dedicated Circle Buffer structure that can be

configured according to different kernel filter

sizes. Buffer allows the reused data between

convolution operations to be saved with an

efficient caching and management mechanism

that is simple to implement in hardware and

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 70

requires minimal memory. Its asynchronous

operation mechanism between data writing and

reading makes it possible for the Loader and the

MAC unit to work in parallel at different speeds

without conflict.

2. Proposed Architecture

In this paper, the 2D convolution unit is

designed to reduce the memory access

bandwidth by efficiently using data that repeats

between convolution operations. The top-level

structure of the 2D convolution unit is shown in

Fig. 4. To maintain the accuracy of the CNN's

operation, the 2D convolution unit was designed

with 24-bit fixed-point architecture. The

structure consists of a Loader, a Circle Buffer, a

MAC unit, and a file of control registers RF

(Register File). The RF register file includes

Control Registers to store parameters to control

the operation of the convolution unit, and

Weight Registers to store the weights of the

kernel filter. In this way, the filter weights only

need to be loaded once at the time the

convolution unit starts working. The Loader is

designed to read an image from external memory

in a predefined pattern and load it into a Circle

Buffer. Each unit is designed and modeled in

detail at RTL (Register Transfer Logic) level to

get the best performance and lowest power

consumption.

Dout

LOADER
Din

Addr

MRe

WE

WCLK
Full

MAC

RE

RCLK

Empty

ConV2D

I

Circle Buffer

W
R

E

W
R

A

W

K2

M2

Iaddr

B

R

C

Control Registers Weight Registers
RF

iDMAC_Start 2DConV_Start

c
s_

n

io
r
in

_
n

io
w

in
_

n

a
in

d
b

in

84H
ld

A

H
r
e
q

WE2NS

SoNS
K

Done_C

Done_D

Fig. 4. The overall block diagram of the

convolution unit.

Fig. 5 shows a timing diagram describing the

operation of the convolution unit. First, the

control parameters need to be written to the

Control Registers. Right after that, the Loader

will be activated to gradually load input data

from the external memory to the Circle Buffer.

At the same time, the weights of the kernel filter

are also loaded into the Weight Registers. As

soon as the Weight Registers have been loaded,

the Circle Buffer is also ready, so the MAC unit

can run.

Conf. 1

MAC

DMAC

Weight

Registers

Conf. 1
Control

Registers

Resource

Time (Cycles)

In Use Conf. 2

Load Data to Circle Buffer

Run

Load Data to Circle Buffer

Run

Conf. 2

The time for loading context #2 is hidden

under the execution time of the context #1

ILDE

ILDE

Run

In Use

Run

Fig. 5. Operating process of the convolution unit.

Each of the above components in the 2D

convolution unit will be described in detail

below.

2.1. Circle Buffer

Fig. 6 describes the operation of the Circle

Buffer for the case of kernel filter size K = 3. The

Circle Buffer is designed to store six values

shared between two convolution operations. The

yellow squares represent the data elements that

need to be loaded from the input data memory to

the buffer. The element numbered in red

indicates that it is the first element in the

submatrix that needs to be convoluted. It can be

seen that for the first convolution operation of

each band since there is no data in the Circle

Buffer yet, the Loader needs to load nine

elements from the input data memory to the

Circle Buffer. In the next operation, since there

are already six elements from the previous load,

the Loader only needs to load three new

elements.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 71

1 7 13 2 8 14 3 9 15

4 10 16 2 8 14 3 9 15

4 10 16 5 11 17 3 9 15

4 10 16 5 11 17 6 12 18

Operation
#1

Band 1

7 13 19 8 14 20 9 15 21

10 16 22 8 14 20 9 15 21

10 16 22 11 17 23 9 15 21

10 16 22 11 17 23 12 18 24

Band 2

Operation
#2

Operation
#3

Operation
#4

13 19 25 14 20 26 15 21 27

16 22 28 14 20 26 15 21 27

16 22 28 17 23 29 15 21 27

16 22 28 17 23 29 18 24 30

Band 3

19 25 31 20 26 32 21 27 33

22 28 34 20 26 32 21 27 33

22 28 34 23 29 35 21 27 33

22 28 34 23 29 35 24 30 36

Band 4

Operation
#1

Operation
#2

Operation
#3

Operation
#4

Operation
#1

Operation
#2

Operation
#3

Operation
#4

Operation
#1

Operation
#2

Operation
#3

Operation
#4

Fig. 6. Loading and buffering data in the

circle buffer.

To manage writing data to the buffer and

reading data out of the buffer, the Circle Buffer

uses the following three pointers:

▪ The Write Pointer (WP) indicates the

location in the buffer to which data can be

written. After each data write this pointer

will increase by 1;

▪ The Read Pointer (RP) indicates the start

location in the buffer for a read round.

After each read round is completed, this

pointer is incremented by K units;

▪ The Circle Pointer (CP) indicates the

location in the buffer that can be read in a

read round.

Fig. 7 shows the state machine that describes

the operation of the Circle Buffer. The Circle

Buffer goes through some states that are

described in detail as follows:

▪ Reset state: after power-on or reset, the

buffer enters the Reset state. In this state,

WP = RP = CP;

▪ Full buffer state (Full): occurs when WP

+ 1 = RP;

▪ Empty buffer state (Empty): occurs when

RP = WP (after Reset) or CP = WP (when

CP has not moved one round);

▪ Write state: in this state, data from the

outside is written to the buffer's memory at

the location pointed to by the WP pointer.

After writing, WP increments by 1 to point

to the next writable location;

▪ Read state: in this state, data is read out of

the buffer's memory at the location pointed

to by the CP pointer. The CP pointer

moves to the next location after each read.

The reading ends when the CP has moved

one round, which is equivalent to R = K×K

positions. At the end of the read, RP is

updated to RP + K and CP is assigned with

RP.

Reset

Empty = 1

Full = 0

Write

WP++

Wait

Full

Full = 1

Reset

WE = 1 WP + 1 = RP

RE = 1 WE = 1 WP+1 RP

Read

CP++

Empty

Empty = 1

RE = 1

CP WP

CP = WP

WE = 1

WE = 0 & RE = 0

RE = 0

WE = 0

Fig. 7. State machine diagram of the circle buffer.

The architecture of the asynchronous Circle

Buffer with two independent clock signals for

data write and data read operations is shown in

Fig. 8. The functions of the circle buffer’s

components are as follows:

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 72

Dual-port Memory

W_CLK R_CLKReset

W_ADD R_ADDW_ENA R_ENA

IN_DATA OUT_DATA

Wadd_Cnt

W_CLK Reset

REG

Radd_Cnt

R_CLK Reset

REG

Control

W_CLK R_CLKReset

Dataout

EMPTY
FULL

WE RE

DataIn

FIFO

+R
P K

RP_En

+

Din

Load

0

Radd_Cnt_Ld

Wptr_Cnt

Wptr

Rptr_Cnt

Rptr

CP

In
t_

W
rE

N
A

In
t_

R
d

EN
A

=
K

2
 - 1

Fig. 8. Block diagram of the circle buffer.

▪ Dual-port memory: Memory is used to

temporarily store data in the Circle Buffer.

To support reading and writing in parallel,

a dual-port memory block is used. The

designed memory capacity is equal to C =

Kmax × Kmax + 1. Where, Kmax is the largest

kernel filter size that can be calculated

using the 2D convolution unit.

▪ Control Unit: The control unit is

responsible for generating control signals

for the process of writing data from the

outside to the circle buffer as well as the

process of getting data from the Circle

Buffer and writing it to the outside as

shown in Fig. 9.

▪ Address Counters: There are two address

counters (Radd_Cnt and Wadd_Cnt) that

are used for generating addresses to

read/write data to/from the buffer's

internal memory. Address counters can be

designed with either binary or Gray

coding, however, the method used must be

the same for the read and write address

counters to ensure that read and write

operations are performed in the same

order.

Empty

RE

R_CLK

Dataout

Rptr_Cnt A A+1

Rptr A (A+1) + RP

If it is the last

word in FIFO

CLK

(a) Reading buffer

Full

WE

W_CLK

Datain

Wptr_Cnt A A+1

Wptr A A+1

If it is the last

empty position

in FIFO

MEM(wptr)

D

D

CLK

(b) Writing buffer

Fig. 9. Timing diagram for buffer read/write control.

2.2. Loader

The function of the Loader is to read the data

of the input image from external memory and

store it in the Circle Buffer. The input image of

size N×N is divided into B bands, each with

height R equal to size K of the kernel filter and

width C equal to N (as illustrated in Fig. 2 with

N = 6 and K= 3). These data Bands will be read

into the convolution unit for processing in order

from top to bottom. In each Band, the data is read

in columns from left to right. The process of

reading data from external memory and loading

them into the Circle Buffer is illustrated in Fig. 6.

The operation of the Loader is described by

the algorithm in Fig. 10.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 73

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

//Input: Iaddr – Start address of input matrix

//Input: B – Number of Bands

//Input: C – Number of columns in a band

//Input: R – Number of rows in a band

//Output: Dout

//Variables: Paddr, Addr

While (Start = ‘1’) do

Done = ‘0’;

Paddr = Iaddr;

For i = 0 to B – 1 do

For j = 0 to C – 1 do

Addr = Paddr

For k = 0 to R – 1 do

Dout = M(Addr);

While (Full_FIFO = ‘1’); //wait until not full

FIFO = Dout;

Addr = Addr + C;

End for k;

Paddr ++;

End for j;

End for i;

Done = ‘1’;

End while;

Fig. 10. Algorithm for Loader.

The diagram of the function blocks of the

Loader is shown in Fig. 11. The functions of the

Loader’s main components are as follows:

▪ The Control Unit (CU) includes the FSM

state machine, the counters (i_cnt, k_cnt,

and j_cnt), and the comparators that

perform the control part of the loops in the

algorithm shown in Fig. 10. At the same

time, the control unit also generates

control signals for reading data from the

input image memory and writing data to

the Circle Buffer. The operation of the

FSM state machine is depicted by the

flowchart in Fig. 12. For direct access to

external memory, the FSM implements a

handshake protocol to receive bus

ownership from the central processing unit

via HldA and Hreq signals.

▪ The Address Generating Unit (AGU)

consists of address registers (Addr and

Paddr), multiplexers, and adders to

calculate the address of the memory

location that needs to be read from the

input image memory.

0 1

Paddr

+

0 1

Addr

+

 1

IaddrC

Addr

Sel1

Sel2

j_cnt

<

jClr jEn

k_cnt

<

kClr kEn

R

i_cnt

<

iClr iEn

B

FSM

iltB kltR jltC

MReFull WClk WEn

Dout

DoutDinStart Done

HldA

Hreq

CU AGU

Fig. 11. Block diagram of Loader.

Done = 1

Start = 1 ? F

T

Done = 0 ;
Sel1 = 0 r; Paddr_ld = 1

iClr = 0';

iltB = 1 F

T

jClr = 0

jltC = 1 F

T

Sel2 = 1 ; Addr_ld = 1 ;
kClr = 0'

kltR = 1 F

T

Mre = 1 ;
Dout_ld = 1

Full = 0 F

T

FIFO_WEn = 1;;
Sel2 = 0 ;

Addr_ld = 1

kCnt_e = 1

Sel1 = 1 ;
Paddr_ld = 1

jCnt_e = 1

iCnt_e = 1

Done = 1

Reset

Fig. 12. FSM’s flowchart of Loader.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 74

2.3. MAC unit

The MAC unit reads data from the Weight

Registers and Circle Buffers and then performs

multiply-accumulate operations according to the

control parameters. The operation of the MAC is

depicted by a pseudo-code program in Fig. 13.

Fig. 14 shows the functional block diagram of

the MAC unit. The main functional blocks

include:

▪ The Datapath is made up of a multiplier,

an adder, and an accumulator. The

datapath gets two input operands, X and Y,

to calculate the product X×Y and add

cumulatively to Conv2D. The operation of

the datapath is controlled by the signals

generated by the control unit.

▪ The Control Unit generates signals to read

data I from the Circle Buffer and weight

W from the Weight Registers File and

controls the Datapath. After completing a

convolution value, the Control Unit

generates control signals to write this

value to external memory. The operation

of the Control Unit follows the state

machine diagram shown in Fig. 15.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

While (1) do

While (Start = ‘0’); //Wait until Start = ‘1’

Done = ‘0’;

While (m < M×M – 1) do

WE2NS = ‘0’;

ConV2D = 0;

For n = 0 to K×K – 1 do

I = Circle_Buffer;

W = W_RF(i);

ConV2D = MAC(I, W);

End for n;

 While (SoNS= ‘1’); //wait until next stage ready

WE2NS = ‘1’;

m++;

End while;

Done = ‘1’;

End while;

Fig. 13. Pseudo-code describing the operation of

MAC unit.

×
+

W

En

WRE WRA

MAC

nRst

Control Unit

Y

X

Empty

RCLK

ConV2D

K2M2

WE2NS

SoNS

RE

I

Datapath

Fig. 14. Block diagram of MAC unit.

Done = 1
WE2NS = 0 ,

Busy = 0

Start = 1 ? F

T

Done = 1 ;

n_lt_K2 = 1
F

Read Circle_Buffer;
Read W_RF(i);

MAC_EN = 1

nCnt_En = 1

WE2NS = 1
Busy = 0

0:

1:

2:

5:

7:

9:

10:

11:

T

CB_Empty = 0
F

T

6:

SoNS = 0

T

F

12:

Reset

MAC_nRst = 0 ; Busy = 1
WE2NS = 0 ;

nCnt_nRst = 0 ;

m_lt_M2 = 1
F

3:

T

mCnt_En = 1

Done = 1

Start = 0 ? FT
Done = 0

4:

13:

14:

15:16:

Fig. 15. FSM flowchart of MAC unit.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 75

3. Experiment and Evaluation

The proposed 2DConV unit had been

modeled at the RTL level in the VHDL

language. Then, the 2DConV unit had been

simulated, synthesized, and implemented on

FPGA using Vivado Design Suite software from

Xilinx. The experimental results and evaluation

are presented in the subsections below.

3.1. Evaluation of Bandwidth Reduction Ratio

As described above, loading and buffering

the data performed by the Loader and the Circle

Buffer are the key to reusing the pre-loaded data

and thus reducing memory access bandwidth and

power consumption.

The number of times the data is loaded from

the input image using the Circle Buffer is

determined as follows:

(N-K+1)×{K2+[(N-K+1)-1] × K}=(N-K+1)×N×K (2)

Thus, the bandwidth reduction ratio

achieved when using Circle Buffer is:

()
() () KKN

N

KKN

KNKN
r

+−
−=

+−

+−
−=

1
1

1

1
1

22
 (3)

Fig. 16 shows the bandwidth reduction ratio

according to different values of K, with N = 256.

Where, BWo and BWn are memory access

bandwidths with and without Circle Buffer,

respectively. For example, for N = 255 and K =

11 then r = 90.5%.

Fig. 16. Evaluation of bandwidth reduction ratio.

3.2. Evaluation of Hardware Cost

The 2DConV unit was also synthesized by

Xilinx Vivado Design Suite. The post-

implementation results of the 2DConV Unit on

the ZynQ-7000 (xc7z020) chip are shown in

Table I. The report timing summary also shows

that the maximum operating frequency of the

2DConV Unit is about 203.6MHz.

Table I. Implementation results on

Xilinx Zynq-7000

Resource Utilization Available Utilization (%)

LUT 363 53200 0.68

LUTRAM 96 17400 0.55

FF 176 106400 0.17

IO 97 200 48.50

BUFG 2 32 6.25

Table II shows a comparison of the resource

utilization and maximum frequency between our

2D convolution unit with several other

architectures. Notice that the design in [2] and

ours is implemented on the same Xilinx xc7z020

FPGA chip, while the design in [1] is

implemented on the Xilinx xc7k325 chip.

Table II. Comparison between our ConV2D unit

and others

Platform [1] [2] This work

FPGA Device xc7k325 xc7z020 xc7z020

Frequency 200MHz 173MHz 203.6MHz

Power 0.117W N/A 0.116W

DSP 25 0 0

LUT 1901 1372 363

LUTRAM 0 N/A 96

FF 3073 2159 176

BRAM 8 0 0

From the above experimental results, the

following conclusions can be drawn. The data

pattern to be loaded from external memory is

simple resulting in reduced complexity and cost

of hardware implementation. Minimum memory

requirement as the buffer memory is used

efficiently for caching the reused data between

computations. This helps to reduce the area and

60.00%

70.00%

80.00%

90.00%

100.00%

 -

 2,000,000

 4,000,000

 6,000,000

 8,000,000

 10,000,000

3 5 7 11

B
yt

es

K

Bandwidth Reduction Ratio

BWn Bwo r

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 76

energy consumption for embedded devices,

meeting the criteria of compactness and long

device usage time. The design does not use the

DSP and BRAM blocks available on the FPGA

chip, which means that our design is technology-

independent. In other words, it can be

implemented with any FPGA technology or any

CMOS ASIC technology.

3.3. Evaluation of Performance

The 2-stage pipeline structure via the Circle

Buffer allows the hardware to be efficiently used

to perform data loading and computation in

parallel to reduce latency and increase

processing throughput.

Fig. 17 shows the waveform obtained from

simulating the post-implementation ConV2D

unit on the Vivado Design Suite software. The

Loader is first configured by writing control

information to the registers BReg, CReg, RReg,

and IAddrReg. Marker 1 (at 0.38µs) indicates

when the Loader has been configured and started

working (InputDMAC_Start = '1'). The Loader

generates the control signals to load data from

external memory into the Circle Buffer. At the

same time, the MAC unit is also configured

through the interface including signals Coeff_in,

C_WE_in, and C_WA_in. The configuration

process takes place in the period from Marker 1

to Marker 2 (at 2.7µs). At the time of Marker 2,

the MAC unit is activated by the signal

ConV2D_Start = '1'. From here, the operation of

the MAC unit and the Loader unit takes place in

parallel. Each time the MAC unit completes

computing an output convolution value it sends

a pulse to the signal ConV2D_Done. At the time

of Marker 3 (at 36.3502µs) the signal

InputDMAC_Done = '1' indicates that the

Loader's data loading process according to the

first configuration has been completed.

Immediately after this point, the new

configuration is written to the control registers of

the Loader. Next signal InputDMAC_Start = '1'

to allow the Loader to load new data to the Circle

Buffer. This operation occurs even if the MAC

unit is still performing calculations according to

the previous configuration.

Fig. 17. Post-implementation simulation waveform of ConV2D Unit.

TABLE III. Comparison of the ConV2D unit with the work in [1]

Input

size

Kernel

size
MACs

Clock

Cycles

Frequency

(MHz)

Execution

time (s)
GOP/s

Power

(W)
GOP/s/W PEs GOP/s/PE

[1] 1x28x28 20x5x5 288,000 11,520 200 5.76E-05 5 0.117 42.7 9 0.556

This

work
1x28x28 20x5x5 288,000 76,203 227 3.36E-04 0.857 0.014 61.2 1 0.857

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 77

TABLE IV. Comparison of the ConV2D unit with the work in [2]

 Input size Kernel size MACs
Clock

Cycles

Frequency

(MHz)

Execution

time (s)
GOP/s

Power

(W)
GOP/s/W PEs GOP/s/PE

[2] 3x224x224 16x3x3x3 7,096,896 N/A 300 4.59E-03 1.55 N/A N/A 36 0.043

This

work
3x224x224 16x3x3x3 7,096,896 2,469,351 203 1.22E-02 0.58 0.016 36.5 1 0.583

TABLE III and TABLE IV show a

comparison of our ConV2D unit with the designs

in [1] and [2]

In TABLE III, we set up the experiment as

follows to match the experimental setup in [1].

The FPGA chip used is xc7k325 of Xilinx. The

input image map is a single channel image with

a size of 28×28 (i.e. N = 28). There are 20 kernel

filters, each is a 5×5 matrix (i.e. K = 5). Thus, the

number of MAC operations to perform is

288,000. The design in [1] required 11,520

cycles to complete the work at a clock frequency

of 200MHz. In other words, the execution time

is 5.76e-5 seconds. Thus, the average

performance of the design in [1] is 5 GOP/s

(Giga operations per second). The power

consumption of the design in [1] is 0.117 W,

therefore, it has an energy efficiency of 42.7

GOP/s/W. The design in [1] uses 9 PEs (i.e.

parallelism factor = 9), so the average

performance per PE is 0.556 GOP/s/PE. Our

design completes the same work in 76,203

cycles at a clock frequency of 227MHz. The

corresponding execution time is 3.36e-4

seconds. Hence, the average performance of our

design is 0.857 GOP/s. However, our design is

using only 1 processing element (PE) (i.e.

parallelism factor = 1). As a result, the power

consumption of our design is 0.014W, therefore,

it has an energy efficiency of 61.7 GOP/s/W. The

average performance per PE is 0.857 GOP/s/PE.

In summary, our design is 1.54× faster in

performance and 1.43× more power efficient

than the design in [1].

In TABLE IV, we set up the experiment as

follows to match the experimental setup in [2].

The FPGA chip used is xc7z020 of Xilinx. The

input image map is a three-channel image with a

size of 224×224 (i.e. N = 224). There are 16

kernel filters, each is a 3×3×3 3D matrix (i.e. K

= 3). Thus, the number of MAC operations to

perform is 7,096,896. The design in [2] spent

4.59e-3 seconds to complete the work at a clock

frequency of 300MHz. Thus, the average

performance of the design in [2] is 1.55 GOP/s.

Our design completes the same work in

2,469,351 cycles at a clock frequency of

203MHz. The corresponding execution time is

1.22e-2 seconds. Hence, the average

performance of our design is 0.58 GOP/s.

However, our design is using only 1 processing

element (PE) (i.e. parallelism factor = 1), while

the design in [2] uses 36 PEs. As a result, the

average performance per PE of the design in [2]

and ours is 0.043 GOP/s/PE and 0.583

GOP/s/PE, respectively. The power

consumption of our design is 0.016W, therefore,

it has an energy efficiency of 36.5 GOP/s/W. The

performance of our design is 13.6× faster than

the design in [2].

4. Conclusion

This paper presents an RTL

microarchitecture level design of a 2D

convolution unit for convolutional neural

networks (CNN). Experimental results prove

that the 2D convolution unit efficiently exploit

the data shared between computations to reduce

memory access throughput thereby reducing

power consumption as well as complexity and

cost of hardware implementation, while require

minimal memory compared to other designs.

N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 78

The microarchitecture proposed in the paper

eliminates the reloading of both the weights as

well as the input data. The architecture can

compute the convolution of the input matrix and

kernel filter that have any size with low latency

and high throughput compared to others. In

terms of performance, our design is 1.54× and

13.6× faster than the design in [1] and [2],

respectively. Our design also achieves 1.43×

more energy efficiency than the design in [2].

Acknowledgment

This work is supported by Vietnam National

University, Hanoi under grant number

TXTCN.22.02.

References

[1] A. Ansari, T. Ogunfunmi, Hardware Acceleration

of a Generalized Fast 2-D Convolution Method for

Deep Neural Networks, IEEE Access, 2022,Vo. 10,

pp. 16843-16858,

https://doi.org/10.1109/ACCESS.2022.3149505.

[2] X. Q. Nguyen, Q. C. Pham, An FPGA-based

Convolution IP Core for Deep Neural Networks

Acceleration, REV Journal on Electronics and

Communications Vol 12, No. 1-2, 2022,

http://dx.doi.org/10.21553/rev-jec.286.

[3] V. Sze, Y. H. Chen, T. J. Yang, J. S. Emer, Efficient

Processing of Deep Neural Networks, Synthesis

Lectures on Computer Architecture, Morgan &

Claypool Publishers, Williston. Vol. 15, No. 2,

2020, pp. 1-341,

https://doi.org/10.48550/arXiv.1703.09039.

[4] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi,

A, Artificial Intelligence Review, Vol. 53, No. 8,

2020, pp. 5455-5516,

https://doi.org/10.1007/s10462-020-09825-6.

[5] Y. Chen, Y. Xie, L. Song, F. Chen, T. A. Tang,

Survey of Accelerator Architectures for Deep

Neural Networks, Engineering, Vol. 6, No. 3, 2020,

pp. 264-274,

https://doi.org/10.1016/j.eng.2020.01.007.

[6] Y. H. Chen, T. J. Yang, J. Emer, V. Sze, Eyeriss v2:

A Flexible Accelerator for Emerging Deep Neural

Networks on Mobile Devices, IEEE Journal on

Emerging and Selected Topics in Circuits and

Systems, Vol. 9, No. 2, 2019, pp. 292-308,

https://doi.org/10.48550/arXiv.1807.07928.

[7] L. Bai, Y. Lyu, X. A. Huang, Unified Hardware

Architecture for Convolutions and Deconvolutions

in CNN, In 2020 IEEE International Symposium on

Circuits and Systems (ISCAS), 2020, (pp. 1-5).

IEEE, https://doi.org/10.48550/arXiv.2006.00053.

[8] A. Ansari, T. Ogunfunmi, A Fast 2-D convolution

Technique for Dep neural Networks, In 2020 IEEE

International Symposium on Circuits and Systems

(ISCAS), 2020, pp. 1-5.

https://doi.org/10.1109/ACCESS.2022.3149505
http://dx.doi.org/10.21553/rev-jec.286

