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Abstract: The computation complexity and huge memory access bandwidth of the convolutional 

layers in convolutional neural networks (CNNs) require specialized hardware architectures to 

accelerate CNN’s computations while keeping hardware costs reasonable for area-constrained 

embedded applications. This paper presents an RTL (Register Transfer Logic) level 

microarchitecture of hardware- and bandwidth-efficient high-performance 2D convolution unit for 

CNN in deep learning. The 2D convolution unit is made up of three main components including a 

dedicated Loader, a Circle Buffer, and a MAC (Multiplier-Accumulator) unit. The 2D convolution 

unit has a 2-stage pipeline structure that reduces latency, increases processing throughput, and 

reduces power consumption. The architecture proposed in the paper eliminates the reloading of both 

the weights as well as the input image data. The 2D convolution unit is configurable to support 2D 

convolution operations with different sizes of input image matrix and kernel filter. The architecture 

can reduce memory access time and power as well as execution time thanks to the efficient reuse of 

the preloaded input data while simplifying hardware implementation. The 2D convolution unit has 

been simulated and implemented on Xilinx's FPGA platform to evaluate its superiority. 

Experimental results show that our design is 1.54× and 13.6× faster in performance than the design 

in [1] and [2], respectively, at lower hardware cost without using any FPGA’s dedicated hardware 

blocks. By reusing preloaded data, our design achieves a bandwidth reduction ratio between 66.4% 

and 90.5%. 
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1. Introduction  

Recently, thanks to the availability of Big 

Data and the rapid development of high-

performance computing systems, artificial 

intelligence (AI) has been noticed and invested 

heavily. Deep Learning is a technique widely 

used in various AI applications. In the past 

decade, deep learning has been successfully 

applied to solve many problems in academia and 

industry, such as image classification, object 

detection and recognition, audio recognition, 

disease diagnosis, and control of self-driving 

cars [3]. 

Convolutional Neural Network (CNN) is one 

of the commonly used deep learning algorithms 

that provide high classification accuracy for 

image and object detection and recognition [4]. 

Moreover, they can be easily applied to new 

applications. However, CNN requires a large 

amount of memory to store millions of 

parameters in each CNN model. Furthermore, 

CNNs are computationally intensive because 

they require billions of operations per image. 

The high computational complexity combined 

with the parallelism inherent in these models 

makes them a target for hardware acceleration. 

There are two main challenges involved in 

implementing hardware for CNNs. The first 

challenge is the computational cost since their 

architecture includes many layers of 

convolution, each of which includes multiple 

multiplications. The second challenge is huge 

memory access bandwidth, where the speed of 

loading data from memory is much lower than 

the speed of processing. These two challenges 

have increased the need to develop specialized 

hardware architectures to accelerate CNN's 

computation while keeping hardware costs 

reasonable for area-constrained embedded 

applications [5]. 

The 2D convolution is the most basic and 

important operation in the convolutional layer of 

the CNN network. According to statistics, this 

operation consumes more than 90% of the total 

computation time of CNN. Furthermore, the 

convolution operation requires a large amount of 

data to be loaded from memory or stored into 

memory. Therefore, 2D convolution has always 

been a focus in the optimization process when 

designing hardware to accelerate CNNs. It will 

be of great benefit if we can shorten the 

computation time in these convolutional layers 

to achieve the best CNN acceleration. 

The 2D convolution of a matrix I of size 

N×N and a kernel matrix W of size K×K can be 

represented by equation (1): 
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where, 0 ≤ x ≤ N – K and 0 ≤ y ≤ N – K. 

Let set M = N – K + 1, which is the size of 

the output matrix. 

The process of calculating the convolution is 

more explicitly described by the algorithm in 

Fig. 1. 

According to equation (1), the total data that 

needs to be loaded from the input matrix to 

complete the convolution is (K×K)×(N–K+1)× 

(N–K+1). However, the input data actually 

needed for the convolution is only N×N 

(corresponding to the size of the input matrix). If 

data repeatability can be exploited efficiently, 

memory access bandwidth can be reduced while 

also increasing convolution speed. 
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// traverse each row of the output matrix  

For (x = 0; x < M; x++) do 

// traverse each column of the output matrix 

For (y = 0; y < M; y++) do 

// traverse the rows of the kernel filter 

For (m = 0; m < K; m++) do 

// traverse the columns of the kernel filter 

For (n = 0; n < K; n++) do 

O(x, y) += I(x+m, y+n)×W(m, n) 

End for 

End for 

End for 

End for 

Fig. 1. 2D convolution algorithm. 

Fig. 2 shows an illustrative example of the 

process of taking data from the input matrix to 

compute the convolution between an input 
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image matrix with 6×6 size (i.e. N = 6) and a 

kernel filter matrix with 3×3 size (i.e. K = 3). 

Notice that in this figure the numbers in squares 

represent the ordinal number of the elements in 

the matrix. Each time a 3×3-submatrix (i.e. 

yellow one) is extracted from the input matrix 

and convoluted with the kernel filter matrix 

according to equation (1) to produce an element 

of the output matrix. There are 16 such 

submatrices. As a result, after the convolution is 

complete we get an output matrix with 4×4 size 

as shown in Fig. 3. Notice that in this figure the 

numbers in squares represent the value of the 

element in the matrix. Notice that when 

processing submatrices in the same Band in 

order from left to right, between the two 

convolution times, the submatrices differ only by 

3 elements. Therefore, the 6 elements shared 

between the 2 convolution times should be 

stored in the convolution unit so that they do not 

have to be reloaded from external memory. 

Therefore, data reuse is an important 

mechanism to improve performance and reduce 

memory access bandwidth in hardware 

implementation for CNNs.
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Fig. 2. An example illustrating the process of accessing data from the input matrix. 
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Fig. 3. An Example of a convolution operation. 

There are several methods to perform the 2D 

convolution. The 2D convolution can be 

performed through matrix multiplication by 

converting the input matrix into a Toeplitz 

matrix as done by Yiran Chen et al in [5]. 

However, the 2D convolution using matrix 

multiplication introduces redundant data in the 

Toeplitz matrix. Therefore, the 2D convolution 

using matrix multiplication takes a long time if 

performed in serialization, or requires a huge 

memory access bandwidth if the operation is 

performed in parallel. The 2D convolution can 

be performed through the sliding window 

method where a window is slid over the input 

matrix to read out the submatrix that will be 

convoluted with the kernel filter matrix. The 

traditional sliding window method does not 

exploit any data reuse resulting in loading some 

input pixels and weights many times. Solutions 

like that of Yu-Hsin Chen et al in [6], 

recommend reusing input weights to avoid 

having to reload them from off-chip memory 

multiple times. In the [7], author Lin Bai et al 

presented an architecture to reduce the latency of 

the CNN network by reusing the input image 

data. The architecture uses a Line Buffer to align 

the input data with the filter weights therefore it 

only supports input matrices and filters with the 

fixed size that has been defined at the design 

time. In the [8], author Anaam Ansari et al. 

analyzed the redundant data in the 2D 

convolution and then proposed an architecture 

for 2D convolution to avoid reading the same 

data from off-chip memory to on-chip memory 

multiple times. In the [1], they have improved 

the processing engine to compute all outputs of 

the 2D convolution without having to reload any 

input data. However, this technique results in a 

hardware design that is relatively complex to 

implement. 

This paper proposes an RTL (Register 

Transfer Logic) microarchitecture-level design 

of a 2D convolution unit for convolutional neural 

networks (CNN). The 2D convolution unit is 

designed to efficiently exploit the data shared 

between convolution operations to reduce 

memory access bandwidth thereby reducing 

power consumption while also taking into 

account the complexity and cost of hardware 

implementation. In addition, the design also 

must have minimal memory requirements 

compared to other designs. The 

microarchitecture proposed in the paper 

eliminates the reloading of both the weights as 

well as the input data. The architecture can 

compute the convolution of the input matrix and 

kernel filter that have any size with low latency 

and high throughput compared to other popular 

techniques. The architecture can reduce memory 

access time and power as well as execution time 

through efficient reuse of input data. 

From an architectural perspective, the 2D 

convolution unit includes a dedicated Loader, a 

Circle Buffer, and a MAC (Multiplier-

Accumulator) unit. The 2D convolution unit is 

designed as a 2-stage pipeline structure to reduce 

latency and power consumption but increase 

throughput. More specifically, this paper 

proposes a Loader’s structure that can directly 

access memory and reads data in a configurable 

pattern. The Loader allows data to be loaded 

continuously and automatically from external 

memory into the convolution unit without the 

intervention of the central processing unit. In 

another aspect, the paper also proposes a 

dedicated Circle Buffer structure that can be 

configured according to different kernel filter 

sizes. Buffer allows the reused data between 

convolution operations to be saved with an 

efficient caching and management mechanism 

that is simple to implement in hardware and 



N. K. Hung, T. Q. Long / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 2 (2023) 66-78 70 

requires minimal memory. Its asynchronous 

operation mechanism between data writing and 

reading makes it possible for the Loader and the 

MAC unit to work in parallel at different speeds 

without conflict. 

2. Proposed Architecture 

In this paper, the 2D convolution unit is 

designed to reduce the memory access 

bandwidth by efficiently using data that repeats 

between convolution operations. The top-level 

structure of the 2D convolution unit is shown in 

Fig. 4. To maintain the accuracy of the CNN's 

operation, the 2D convolution unit was designed 

with 24-bit fixed-point architecture. The 

structure consists of a Loader, a Circle Buffer, a 

MAC unit, and a file of control registers RF 

(Register File). The RF register file includes 

Control Registers to store parameters to control 

the operation of the convolution unit, and 

Weight Registers to store the weights of the 

kernel filter. In this way, the filter weights only 

need to be loaded once at the time the 

convolution unit starts working. The Loader is 

designed to read an image from external memory 

in a predefined pattern and load it into a Circle 

Buffer. Each unit is designed and modeled in 

detail at RTL (Register Transfer Logic) level to 

get the best performance and lowest power 

consumption. 

Dout

LOADER
Din

Addr

MRe

WE

WCLK
Full

MAC

RE

RCLK

Empty

ConV2D

I

Circle Buffer

W
R

E

W
R

A

W

K2

M2

Iaddr

B

R

C

Control Registers Weight Registers
RF

iDMAC_Start 2DConV_Start

c
s_

n

io
r
in

_
n

io
w

in
_

n

a
in

d
b

in

84H
ld

A

H
r
e
q

WE2NS

SoNS
K

Done_C

Done_D

 

Fig. 4. The overall block diagram of the  

convolution unit. 

Fig. 5 shows a timing diagram describing the 

operation of the convolution unit. First, the 

control parameters need to be written to the 

Control Registers. Right after that, the Loader 

will be activated to gradually load input data 

from the external memory to the Circle Buffer. 

At the same time, the weights of the kernel filter 

are also loaded into the Weight Registers. As 

soon as the Weight Registers have been loaded, 

the Circle Buffer is also ready, so the MAC unit 

can run. 
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Fig. 5. Operating process of the convolution unit. 

Each of the above components in the 2D 

convolution unit will be described in detail 

below. 

2.1. Circle Buffer 

Fig. 6 describes the operation of the Circle 

Buffer for the case of kernel filter size K = 3. The 

Circle Buffer is designed to store six values 

shared between two convolution operations. The 

yellow squares represent the data elements that 

need to be loaded from the input data memory to 

the buffer. The element numbered in red 

indicates that it is the first element in the 

submatrix that needs to be convoluted. It can be 

seen that for the first convolution operation of 

each band since there is no data in the Circle 

Buffer yet, the Loader needs to load nine 

elements from the input data memory to the 

Circle Buffer. In the next operation, since there 

are already six elements from the previous load, 

the Loader only needs to load three new 

elements. 
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Fig. 6. Loading and buffering data in the  

circle buffer. 

To manage writing data to the buffer and 

reading data out of the buffer, the Circle Buffer 

uses the following three pointers: 

▪ The Write Pointer (WP) indicates the 

location in the buffer to which data can be 

written. After each data write this pointer 

will increase by 1; 

▪ The Read Pointer (RP) indicates the start 

location in the buffer for a read round. 

After each read round is completed, this 

pointer is incremented by K units; 

▪ The Circle Pointer (CP) indicates the 

location in the buffer that can be read in a 

read round. 

Fig. 7 shows the state machine that describes 

the operation of the Circle Buffer. The Circle 

Buffer goes through some states that are 

described in detail as follows: 

▪ Reset state: after power-on or reset, the 

buffer enters the Reset state. In this state, 

WP = RP = CP; 

▪ Full buffer state (Full): occurs when WP 

+ 1 = RP; 

▪ Empty buffer state (Empty): occurs when 

RP = WP (after Reset) or CP = WP (when 

CP has not moved one round); 

▪ Write state: in this state, data from the 

outside is written to the buffer's memory at 

the location pointed to by the WP pointer. 

After writing, WP increments by 1 to point 

to the next writable location; 

▪ Read state: in this state, data is read out of 

the buffer's memory at the location pointed 

to by the CP pointer. The CP pointer 

moves to the next location after each read. 

The reading ends when the CP has moved 

one round, which is equivalent to R = K×K 

positions. At the end of the read, RP is 

updated to RP + K and CP is assigned with 

RP. 
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Fig. 7. State machine diagram of the circle buffer. 

The architecture of the asynchronous Circle 

Buffer with two independent clock signals for 

data write and data read operations is shown in 

Fig. 8. The functions of the circle buffer’s 

components are as follows: 
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Fig. 8. Block diagram of the circle buffer. 

▪ Dual-port memory: Memory is used to 

temporarily store data in the Circle Buffer. 

To support reading and writing in parallel, 

a dual-port memory block is used. The 

designed memory capacity is equal to C = 

Kmax × Kmax + 1. Where, Kmax is the largest 

kernel filter size that can be calculated 

using the 2D convolution unit. 

▪ Control Unit: The control unit is 

responsible for generating control signals 

for the process of writing data from the 

outside to the circle buffer as well as the 

process of getting data from the Circle 

Buffer and writing it to the outside as 

shown in Fig. 9. 

▪ Address Counters: There are two address 

counters (Radd_Cnt and Wadd_Cnt) that 

are used for generating addresses to 

read/write data to/from the buffer's 

internal memory. Address counters can be 

designed with either binary or Gray 

coding, however, the method used must be 

the same for the read and write address 

counters to ensure that read and write 

operations are performed in the same 

order. 
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(b) Writing buffer 

Fig. 9. Timing diagram for buffer read/write control. 

2.2. Loader 

The function of the Loader is to read the data 

of the input image from external memory and 

store it in the Circle Buffer. The input image of 

size N×N is divided into B bands, each with 

height R equal to size K of the kernel filter and 

width C equal to N (as illustrated in Fig. 2 with 

N = 6 and K= 3). These data Bands will be read 

into the convolution unit for processing in order 

from top to bottom. In each Band, the data is read 

in columns from left to right. The process of 

reading data from external memory and loading 

them into the Circle Buffer is illustrated in Fig. 6. 

The operation of the Loader is described by 

the algorithm in Fig. 10. 
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//Input: Iaddr – Start address of input matrix  

//Input: B – Number of Bands       

//Input: C – Number of columns in a band 

//Input: R – Number of rows in a band 

//Output: Dout  

//Variables: Paddr, Addr 

While (Start = ‘1’) do 

Done = ‘0’; 

Paddr = Iaddr; 

For i = 0 to B – 1 do 

For j = 0 to C – 1 do 

Addr = Paddr 

For k = 0 to R – 1 do 

Dout = M(Addr); 

While (Full_FIFO = ‘1’); //wait until not full 

FIFO = Dout; 

Addr  =  Addr + C; 

End for k; 

Paddr ++; 

End for j; 

End for i; 

Done = ‘1’; 

End while; 

Fig. 10. Algorithm for Loader. 

The diagram of the function blocks of the 

Loader is shown in Fig. 11. The functions of the 

Loader’s main components are as follows: 

▪ The Control Unit (CU) includes the FSM 

state machine, the counters (i_cnt, k_cnt, 

and j_cnt), and the comparators that 

perform the control part of the loops in the 

algorithm shown in Fig. 10. At the same 

time, the control unit also generates 

control signals for reading data from the 

input image memory and writing data to 

the Circle Buffer. The operation of the 

FSM state machine is depicted by the 

flowchart in Fig. 12. For direct access to 

external memory, the FSM implements a 

handshake protocol to receive bus 

ownership from the central processing unit 

via HldA and Hreq signals.  

▪ The Address Generating Unit (AGU) 

consists of address registers (Addr and 

Paddr), multiplexers, and adders to 

calculate the address of the memory 

location that needs to be read from the 

input image memory. 
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Fig. 11. Block diagram of Loader. 
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Fig. 12. FSM’s flowchart of Loader. 
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2.3. MAC unit 

The MAC unit reads data from the Weight 

Registers and Circle Buffers and then performs 

multiply-accumulate operations according to the 

control parameters. The operation of the MAC is 

depicted by a pseudo-code program in Fig. 13. 

Fig. 14 shows the functional block diagram of 

the MAC unit. The main functional blocks 

include: 

▪ The Datapath is made up of a multiplier, 

an adder, and an accumulator. The 

datapath gets two input operands, X and Y, 

to calculate the product X×Y and add 

cumulatively to Conv2D. The operation of 

the datapath is controlled by the signals 

generated by the control unit. 

▪ The Control Unit generates signals to read 

data I from the Circle Buffer and weight 

W from the Weight Registers File and 

controls the Datapath. After completing a 

convolution value, the Control Unit 

generates control signals to write this 

value to external memory. The operation 

of the Control Unit follows the state 

machine diagram shown in Fig. 15. 
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While (1) do 

While (Start = ‘0’);  //Wait until Start = ‘1’ 

Done = ‘0’; 

While (m < M×M – 1) do 

WE2NS = ‘0’; 

ConV2D = 0; 

For n = 0 to K×K – 1 do 

I = Circle_Buffer; 

W = W_RF(i); 

ConV2D = MAC(I, W); 

End for n; 

  While (SoNS= ‘1’); //wait until next stage ready 

WE2NS = ‘1’; 

m++; 

End while; 

Done = ‘1’; 

End while; 

Fig. 13. Pseudo-code describing the operation of 

MAC unit.  
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Fig. 14. Block diagram of MAC unit. 
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Fig. 15. FSM flowchart of MAC unit. 
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3. Experiment and Evaluation 

The proposed 2DConV unit had been 

modeled at the RTL level in the VHDL 

language. Then, the 2DConV unit had been 

simulated, synthesized, and implemented on 

FPGA using Vivado Design Suite software from 

Xilinx. The experimental results and evaluation 

are presented in the subsections below. 

3.1. Evaluation of Bandwidth Reduction Ratio 

As described above, loading and buffering 

the data performed by the Loader and the Circle 

Buffer are the key to reusing the pre-loaded data 

and thus reducing memory access bandwidth and 

power consumption. 

The number of times the data is loaded from 

the input image using the Circle Buffer is 

determined as follows: 
 

(N-K+1)×{K2+[(N-K+1)-1] × K}=(N-K+1)×N×K   (2) 

Thus, the bandwidth reduction ratio 

achieved when using Circle Buffer is: 
 

( )
( ) ( ) KKN

N

KKN

KNKN
r

+−
−=

+−

+−
−=

1
1

1

1
1

22
 (3) 

 

Fig. 16 shows the bandwidth reduction ratio 

according to different values of K, with N = 256. 

Where, BWo and BWn are memory access 

bandwidths with and without Circle Buffer, 

respectively. For example, for N = 255 and K = 

11 then r = 90.5%. 

 

Fig. 16. Evaluation of bandwidth reduction ratio. 

3.2. Evaluation of Hardware Cost 

The 2DConV unit was also synthesized by 

Xilinx Vivado Design Suite. The post-

implementation results of the 2DConV Unit on 

the ZynQ-7000 (xc7z020) chip are shown in 

Table I. The report timing summary also shows 

that the maximum operating frequency of the 

2DConV Unit is about 203.6MHz. 

Table I. Implementation results on  

Xilinx Zynq-7000 

Resource Utilization Available Utilization (%) 

LUT 363 53200 0.68 

LUTRAM 96 17400 0.55 

FF 176 106400 0.17 

IO 97 200 48.50 

BUFG 2 32 6.25 

Table II shows a comparison of the resource 

utilization and maximum frequency between our 

2D convolution unit with several other 

architectures. Notice that the design in [2] and 

ours is implemented on the same Xilinx xc7z020 

FPGA chip, while the design in [1] is 

implemented on the Xilinx xc7k325 chip.  

Table II. Comparison between our ConV2D unit  

and others 

Platform [1] [2] This work 

FPGA Device xc7k325 xc7z020 xc7z020 

Frequency 200MHz 173MHz 203.6MHz 

Power 0.117W N/A 0.116W 

DSP 25 0 0 

LUT 1901 1372 363 

LUTRAM 0 N/A 96 

FF 3073 2159 176 

BRAM 8 0 0 

From the above experimental results, the 

following conclusions can be drawn. The data 

pattern to be loaded from external memory is 

simple resulting in reduced complexity and cost 

of hardware implementation. Minimum memory 

requirement as the buffer memory is used 

efficiently for caching the reused data between 

computations. This helps to reduce the area and 
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energy consumption for embedded devices, 

meeting the criteria of compactness and long 

device usage time. The design does not use the 

DSP and BRAM blocks available on the FPGA 

chip, which means that our design is technology-

independent. In other words, it can be 

implemented with any FPGA technology or any 

CMOS ASIC technology. 

3.3. Evaluation of Performance 

The 2-stage pipeline structure via the Circle 

Buffer allows the hardware to be efficiently used 

to perform data loading and computation in 

parallel to reduce latency and increase 

processing throughput. 

Fig. 17 shows the waveform obtained from 

simulating the post-implementation ConV2D 

unit on the Vivado Design Suite software. The 

Loader is first configured by writing control 

information to the registers BReg, CReg, RReg, 

and IAddrReg. Marker 1 (at 0.38µs) indicates 

when the Loader has been configured and started 

working (InputDMAC_Start = '1'). The Loader 

generates the control signals to load data from 

external memory into the Circle Buffer. At the 

same time, the MAC unit is also configured 

through the interface including signals Coeff_in, 

C_WE_in, and C_WA_in. The configuration 

process takes place in the period from Marker 1 

to Marker 2 (at 2.7µs). At the time of Marker 2, 

the MAC unit is activated by the signal 

ConV2D_Start = '1'. From here, the operation of 

the MAC unit and the Loader unit takes place in 

parallel. Each time the MAC unit completes 

computing an output convolution value it sends 

a pulse to the signal ConV2D_Done. At the time 

of Marker 3 (at 36.3502µs) the signal 

InputDMAC_Done = '1' indicates that the 

Loader's data loading process according to the 

first configuration has been completed. 

Immediately after this point, the new 

configuration is written to the control registers of 

the Loader. Next signal InputDMAC_Start = '1' 

to allow the Loader to load new data to the Circle 

Buffer. This operation occurs even if the MAC 

unit is still performing calculations according to 

the previous configuration.
 

 

Fig. 17.  Post-implementation simulation waveform of ConV2D Unit. 

TABLE III. Comparison of the ConV2D unit with the work in [1] 

  
Input 

size 

Kernel 

size 
MACs 

Clock 

Cycles 

Frequency 

(MHz) 

Execution 

time (s) 
GOP/s 

Power 

(W) 
GOP/s/W PEs GOP/s/PE 

[1] 1x28x28 20x5x5 288,000 11,520  200 5.76E-05 5  0.117 42.7 9 0.556  

This 

work 
1x28x28 20x5x5 288,000 76,203 227 3.36E-04 0.857  0.014 61.2 1 0.857  
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TABLE IV. Comparison of the ConV2D unit with the work in [2] 

  Input size Kernel size MACs 
Clock 

Cycles 

Frequency 

(MHz) 

Execution 

time (s) 
GOP/s 

Power 

(W) 
GOP/s/W PEs GOP/s/PE 

[2] 3x224x224 16x3x3x3 7,096,896  N/A  300 4.59E-03  1.55  N/A N/A 36 0.043 

This 

work 
3x224x224 16x3x3x3 7,096,896 2,469,351 203 1.22E-02 0.58 0.016 36.5 1 0.583 

TABLE III and TABLE IV show a 

comparison of our ConV2D unit with the designs 

in [1] and [2] 

In TABLE III, we set up the experiment as 

follows to match the experimental setup in [1]. 

The FPGA chip used is xc7k325 of Xilinx. The 

input image map is a single channel image with 

a size of 28×28 (i.e. N = 28). There are 20 kernel 

filters, each is a 5×5 matrix (i.e. K = 5). Thus, the 

number of MAC operations to perform is 

288,000. The design in [1] required 11,520 

cycles to complete the work at a clock frequency 

of 200MHz. In other words, the execution time 

is 5.76e-5 seconds. Thus, the average 

performance of the design in [1] is 5 GOP/s 

(Giga operations per second). The power 

consumption of the design in [1] is 0.117 W, 

therefore, it has an energy efficiency of 42.7 

GOP/s/W. The design in [1] uses 9 PEs (i.e. 

parallelism factor = 9), so the average 

performance per PE is 0.556 GOP/s/PE. Our 

design completes the same work in 76,203 

cycles at a clock frequency of 227MHz. The 

corresponding execution time is 3.36e-4 

seconds. Hence, the average performance of our 

design is 0.857 GOP/s. However, our design is 

using only 1 processing element (PE) (i.e. 

parallelism factor = 1). As a result, the power 

consumption of our design is 0.014W, therefore, 

it has an energy efficiency of 61.7 GOP/s/W. The 

average performance per PE is 0.857 GOP/s/PE. 

In summary, our design is 1.54× faster in 

performance and 1.43× more power efficient 

than the design in [1]. 

In TABLE IV, we set up the experiment as 

follows to match the experimental setup in [2]. 

The FPGA chip used is xc7z020 of Xilinx. The 

input image map is a three-channel image with a 

size of 224×224 (i.e. N = 224). There are 16 

kernel filters, each is a 3×3×3 3D matrix (i.e. K 

= 3). Thus, the number of MAC operations to 

perform is 7,096,896. The design in [2] spent 

4.59e-3 seconds to complete the work at a clock 

frequency of 300MHz. Thus, the average 

performance of the design in [2] is 1.55 GOP/s. 

Our design completes the same work in 

2,469,351 cycles at a clock frequency of 

203MHz. The corresponding execution time is 

1.22e-2 seconds. Hence, the average 

performance of our design is 0.58 GOP/s. 

However, our design is using only 1 processing 

element (PE) (i.e. parallelism factor = 1), while 

the design in [2] uses 36 PEs. As a result, the 

average performance per PE of the design in [2] 

and ours is 0.043 GOP/s/PE and 0.583 

GOP/s/PE, respectively. The power 

consumption of our design is 0.016W, therefore, 

it has an energy efficiency of 36.5 GOP/s/W. The 

performance of our design is 13.6× faster than 

the design in [2]. 

4. Conclusion 

This paper presents an RTL 

microarchitecture level design of a 2D 

convolution unit for convolutional neural 

networks (CNN). Experimental results prove 

that the 2D convolution unit efficiently exploit 

the data shared between computations to reduce 

memory access throughput thereby reducing 

power consumption as well as complexity and 

cost of hardware implementation, while require 

minimal memory compared to other designs. 
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The microarchitecture proposed in the paper 

eliminates the reloading of both the weights as 

well as the input data. The architecture can 

compute the convolution of the input matrix and 

kernel filter that have any size with low latency 

and high throughput compared to others. In 

terms of performance, our design is 1.54× and 

13.6× faster than the design in [1] and [2], 

respectively. Our design also achieves 1.43× 

more energy efficiency than the design in [2]. 
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