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Abstract: VLSP 2025 marks the eleventh annual workshop organized by the Vietnamese Language
and Speech Processing community. This year, we introduce the inaugural Vietnamese Voice Con-
version (VC) shared task, establishing a standardized benchmark for evaluating speech technologies
in the Vietnamese language. The task focuses on developing systems capable of converting a source
speaker’s voice to a target identity while preserving linguistic integrity and naturalness. To support
this initiative, we released a large-scale, multi-genre dataset comprising over 26 hours of speech from
100 speakers across diverse recording conditions. The challenge attracted 18 participating teams,
with the top-performing system-based on a multilingual diffusion-transformer architecture-achieving
a MOS of 4.29, an SMOS_TGT of 3.65, and a WER of 9.83. These results provide critical bench-
marks and a robust foundation for future research in Vietnamese voice conversion.
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1. Introduction

Voice Conversion is the process of transform-
ing the speech of one speaker (source) into the
voice of another speaker (target) while preserv-
ing the linguistic content. Unlike non-tonal lan-
guages, Vietnamese presents unique challenges
for Voice Conversion due to its complex tonal sys-
tem and intricate phonetic nuances. A successful
VC system for Vietnamese must not only trans-
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form the speaker’s timbre but also accurately pre-
serve the six tones, which are fundamental to the
semantic meaning of the utterances. Any slight
distortion in the fundamental frequency (F0) tra-
jectories during the conversion process can lead
to a complete change in meaning or a significant
drop in naturalness. This specific linguistic char-
acteristic necessitates a more sophisticated mod-
eling of prosodic features and fine-grained
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control over pitch contours to ensure that the con-
verted speech remains both intelligible and cul-
turally authentic. In recent years, VC has received
growing attention due to its wide range of appli-
cations, including personalized speech synthesis,
voice anonymization, and data augmentation for
speech and language technologies.

Two main approaches exist for building Voice
Conversion (VC) systems. Text-based methods
[1, 2] rely on annotated corpora with speech-text
pairs for training. In contrast, text-free meth-
ods [3–5] focus on techniques, such as data aug-
mentation or bottleneck or adversarial training, in
an attempt to disentangle linguistic and speaker
information directly from audio without requir-
ing transcript labels. Despite recent advances,
these methods frequently suffer from issues such
as speaker information leakage, low output nat-
uralness, and the loss of information. Conse-
quently, achieving robust and scalable VC re-
mains an open research problem.

To encourage further progress and establish
a benchmark for the community, we organize
the Vietnamese Voice Conversion Shared Task
2025 under the framework of the eleventh Viet-
namese Language and Speech Processing Work-
shop (VLSP 2025). This is the first time a VC task
has been included in VLSP. The goal is to provide
a Vietnamese dataset dedicated to VC, evaluate
current approaches, and foster the development of
robust solutions in Vietnamese scenarios.

The shared task consists of a single evalu-
ation track, designated as VC-T1. Participants
are allowed to use pretrained models and external
datasets. However, any pretrained model must be
publicly available and accessible to all without re-
quiring special access or permission. Teams must
disclose and share the pretrained models they in-
tend to use with the organizers and other partic-
ipants. Additionally, participants are required to
inform the organizers in advance about the spe-
cific pretrained models they plan to use and their
intended purpose, so that eligibility can be veri-
fied.

For practical relevance, the dataset has been
designed to cover diverse Vietnamese accents and
various recording conditions, making it possible
to evaluate the robustness of submitted systems
under real-world scenarios. We expect the chal-
lenge to inspire innovative approaches, improve
the performance of VC in Vietnamese, and con-
tribute to advancing research in multilingual and
low-resource voice conversion.

The rest of this paper is organized as follows.
Section 2 introduces the timeline and status at
the time of publication. Section 3 describes data
preparation. Section 4 reports the evaluation re-
sults. Finally, Section 5 concludes the paper and
discusses future directions.

2. Timeline and Status at Publication Time

The VLSP 2025 Challenge on Vietnamese
Voice Conversion was announced and the training
data along with the public test sets were released
on July 1st, 2025. Teams were required to report
any external pretrained models or datasets they
used by July 10th, 2025, ensuring transparency
in the use of resources. Following this, the pri-
vate test set was released on August 14th, 2025,
with the deadline for private test submissions set
on August 17th, 2025. Results from the private
test phase were shared with participants on Au-
gust 23rd, 2025. Technical reports were submit-
ted by August 30th, 2025.

As of the publication date of this paper, the
evaluation and verification processes remain un-
derway. Official notifications of acceptance are
scheduled for September 27th, 2025, and the
camera-ready versions are due on October 3rd,
2025. The VLSP 2025 conference, where final
results and discussions will be presented, will be
held on October 29th-30th, 2025. Throughout
the challenge duration, communication was facil-
itated via a dedicated Zalo group to support par-
ticipant interaction and information exchange.
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3. Overview of Tasks

The VLSP 2025 Challenge on Vietnamese
Voice Conversion focuses on advancing voice
conversion technology for Vietnamese, empha-
sizing both practical performance and model ro-
bustness. The task permits the use of pub-
licly available pretrained models and external
datasets, allowing participants to leverage exist-
ing resources to enhance system quality by incor-
porating transferable knowledge from large-scale
models. This task provides an opportunity to ex-
plore how pretrained knowledge can boost per-
formance in Vietnamese voice conversion. The
next provides detailed descriptions of the task,
datasets, and evaluation protocols.

4. Data Building

This chapter describes the construction
pipeline for a multi-genre corpus. In addition,
the author also provides detailed explanations for
each stage in the pipeline and describes related
works.

To build a large-scale speech dataset, this
project selects YouTube as the primary source
of data collection, leveraging the convenience
of diverse multimedia content spontaneously up-
loaded by users. To ensure diversity across cat-
egories, the author created a taxonomy of audio
genres such as Talk show, Vlog, Sharing, etc., as
summarized in Table 1. In total, 1,859 audio sam-
ples were collected.

Currently, most language data pipelines [6, 7]
focus on utterances from videos with a single
speaker or structured conversations where turns
are respected. These tend to be formal or pre-
pared, lacking the spontaneity of natural daily
conversations.

Therefore, besides genre, speech delivery is
also categorized into two groups: (1) Prepared
speech, including monologues or arranged di-
alogs without interruptions, and (2) Spontaneous
speech, found in talk shows or natural conversa-

Table 1. Statistics of audio duration and number of
audio samples by category

Category Duration (hours) # audio
Sharing 211 799
Talk show 157 167
Review 83 317
TV show 68 137
Game 40 123
Lecture 36 129
Vlog 24 87
News 14 100
Total 642 1,859

tions with free-flowing, unprepared content. De-
tails and statistics are shown in Table 2.

Table 2. Duration and percentage of speech style

Speech Style Duration (h) Percentage (%)
Spontaneous 225 35.05
Prepared 417 64.95
Total 642 100

4.1. Speaker Diarization

Unlike the task of speaker verification, which
aims to recognize an individual regardless of
speaking style, this task defines a "speaker" as
an individual associated with a specific speak-
ing style. This means if a person intentionally
changes their speaking style (e.g., impersonation,
joking, acting), the system considers them as a
different speaker from the original style.

To ensure each audio segment contains only
one speaker at any given time-meeting the re-
quirements for speech synthesis tasks-a speaker
diarization pipeline based on pyannote speaker
diarization-3.1 1 is used.

Real-world conversations commonly include
interruptions, overlaps, and turn-taking, meaning
a segment attributed to one speaker may contain

1https://github.com/pyannote/pyannote-audio



N. T. T. Trang et al. / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 41, No. 2 (2025) 68–85 71

Figure 1. The entire process of building a dataset.

interleaving speech from another. While prior
work often assumes single-speaker audio, this
project embraces multi-speaker scenarios to en-
able the collection of more diverse conversational
data from sources such as talk shows, TV pro-
grams, news broadcasts, interviews, and confer-
ences.

Handling simultaneous speakers introduces
challenges such as overlap, mislabeling, and frag-
mented utterances. However, effectively process-
ing such cases opens access to large and diverse
audio resources that traditional pipelines often
discard due to their limitations. These multi-
speaker environments provide valuable data for
improving generalization and speaker variability
in speech synthesis models.

To ensure high-quality data, this work defines
three strict criteria for a valid data point: (i) each
segment must contain exactly one speaker; (ii) at

Figure 2. Speaker per video distribution.

any given moment, only one speaker label is al-
lowed; (iii) the utterance must be complete, with
a clear start and end, without interruptions.

To satisfy the first criterion, overlapped seg-
ments are removed by iterating through the di-
arization output in chronological order. Each data
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point consists of the speaker label and segment
boundaries; two additional fields, marking “con-
flict at start” and “conflict at end,” are introduced
to indicate overlap. As a result, each final seg-
ment includes five fields: start time, end time,
speaker label, conflict-start flag, and conflict-end
flag.

Next, to satisfy the second criterion, speak-
ers with insufficient speaking duration are filtered
out using a duration-based threshold:

T =


D · 0.1
⌊N/2⌋

, N > 1,

0, N ≤ 1.

where T : threshold, D: sum duration of all speak-
ers, N: number of speakers.

The rationale behind this thresholding mecha-
nism is to prevent the inclusion of transient speak-
ers or background voices that do not provide suf-
ficient acoustic material for reliable model train-
ing. By dynamically adjusting T based on the to-
tal duration D and the number of detected speak-
ers N, the pipeline maintains a flexible yet rig-
orous filtering criterion. In multi-party conver-
sations, such as talk shows or games, the prob-
ability of overlapping speech and short interjec-
tions increases significantly. The denominator
⌊N/2⌋ acts as a penalty term to compensate for the
fragmentation of speaker clusters, ensuring that
only dominant and consistent voices are retained.
This step is crucial for minimizing "label noise"
which could otherwise degrade the performance
of speaker-conditioned VC models.

This design assumes that in a two-speaker
conversation, no more than 10% of total time in-
volves simultaneous speech. As the number of
speakers increases, the denominator accounts for
potential duplicate or fragmented labels by as-
suming roughly one overlapping or redundant la-
bel per two additional speakers.

Finally, to ensure complete utterances, a pre-
trained Silero VAD model [8] is used to segment
audio into coherent speech units and remove si-
lence or non-speech portions. Segments marked

with boundary conflicts (from overlap detection)
are discarded to avoid utterances that were cut due
to interruptions.

Although each VAD segment is a continu-
ous utterance, overly short pauses may break nat-
ural phrasing. Following linguistic research by
Kormos and Dénes [9], pauses shorter than 0.25
seconds between adjacent segments of the same
speaker are treated as internal hesitations rather
than true boundaries. Thus, such segments are
merged to improve naturalness and discourse con-
tinuity.

With the complete processing pipeline-
overlap removal, speaker filtering, VAD-based
segmentation, and pause-aware merging-the re-
sulting dataset contains only clean, single-
speaker, complete utterances. This ensures suit-
ability for downstream multi-speaker speech syn-
thesis and speaker-conditioned modeling tasks.

4.2. Audio Denoising

The collected YouTube data contains back-
ground noise that affects text-to-speech quality.
While speaker diarization can handle noise, de-
noising is applied to improve audio quality and
reduce processing time. Traditional denoisers
[10] often harm voice naturalness, so DeepFilter-
Net [11] - a deep learning model that enhances
speech by improving spectral envelopes and pe-
riodic components - is used. This approach ef-
fectively removes noise while preserving natural
voice quality for speech synthesis.

4.3. Speech Quality Assessment

Audio quality evaluation is essential for build-
ing synthetic datasets and developing speech
recognition systems, ensuring poor or noisy sam-
ples are removed to improve training efficiency
and model reliability.

This process uses two advanced models -
NISQA [12] and WV-MOS [13] - together to
enhance evaluation accuracy and reduce bias.
NISQA is a non-intrusive, multidimensional
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model combining CNN and self-attention to as-
sess overall quality and specific factors like nois-
iness and distortion without needing a reference
signal. WV-MOS predicts overall quality scores
with high accuracy, trained on diverse, high-
quality datasets.

Using both models allows combining
NISQA’s detailed analysis with WV-MOS’s
precise scoring, enabling better detection and
removal of low-quality audio. A threshold of 3.2
is applied for both models Mean Opinion Scores
to filter out substandard samples before further
processing.

4.4. Auto speech Recognition

Ensuring precise alignment between audio
and transcripts is vital in TTS development. The
author uses WhisperX [14], an ASR tool known
for high accuracy in Vietnamese and precise time
stamping. WhisperX transcribes audio and pro-
vides exact timestamps for sentences and words,
enabling efficient data filtering, segment trim-
ming, and normalization while reducing manual
effort.

To maintain data quality, utterances with ab-
normal speech rates are filtered out. Based on
studies and practical limits, a maximum threshold
of 10 words per second is set to remove outliers,
preserving the naturalness of the dataset.

4.5. Speaker Labeling

Recent advances in speech synthesis increas-
ingly emphasize factors beyond raw text and
acoustic signals-such as speaker identity and
emotional cues-to improve naturalness and ex-
pressiveness [15, 16]. Building on these insights,
this work introduces a data processing method de-
signed to obtain reliable speaker labels.

The labeling process begins at the episode
level. Each episode is diarized independently,
leveraging the diarization model’s strong abil-
ity to distinguish speakers. T-SNE visualizations

Figure 3 reveal clearly separated embedding clus-
ters, supporting this per-episode approach. Utter-
ances tagged with the same initial label are then
refined through clustering based on their pair-
wise similarity, computed from ECAPA-TDNN
speaker embeddings [17], which are pretrained on
the VoxCeleb datasets [18, 19].

Figure 3. TSNE of speaker embeddings in each
group.

Similarity distributions shown in Figure 4 in-
dicate a near-Gaussian density for same-speaker
pairs, peaking around 0.72. In contrast, em-
beddings from different speakers peak near 0.58.
This separation motivates selecting a similarity
threshold of 0.75 to consolidate utterances be-
longing to the same speaker within an episode.

To obtain stable cluster-level representations,
each speaker is required to have at least 30 utter-
ances. With an estimated same-speaker standard
deviation of 0.09, the standard error of the mean
embedding magnitude for 30 samples is:

S E =
σ
√

n
=

0.09
√

30
≈ 0.0164

which amounts to roughly 2.3% of the average
similarity score (0.721). This ensures that the
computed speaker embedding is statistically reli-
able. For each qualified cluster, 10% of the utter-
ances (at least 30 samples) are randomly selected
to compute the representative embedding.
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Figure 4. Similarity density table when comparing 2
utterances by the same/different speakers.

In the subsequent stage, these representa-
tive embeddings are compared across episodes to
identify speakers who appear repeatedly within
the same playlist. Similar to the earlier step, we
construct a graph in which each node corresponds
to a detected speaker, and edge weights are deter-
mined by embedding similarity.

Based on the statistical findings above, a
stricter threshold of 97% similarity is adopted
for merging speakers across episodes. This
ensures that only highly consistent speaker
representations-whose averaged embeddings dif-
fer within the expected 2–3% sampling variation-
are combined. Such a cutoff provides a balance
between minimizing erroneous merges and main-
taining compact, coherent clusters, enabling ro-
bust cross-episode speaker identification for long-
form content.

4.6. Summary of Results

4.6.1. Results of Audio and Text Labeling

The audio and text data have been normalized
and aligned with high quality following process-
ing and labeling steps. Audio segments exceed-
ing 50 seconds in duration were excluded to re-
duce computational burden and improve model
efficiency. Additionally, segments with an aver-
age speaking rate exceeding 10 words per second
were removed to maintain accuracy and natural-
ness in synthesized speech.

Table 3. Final data for contest

Duration (h) # Utterances
26.35 27,900

4.6.2. Results of Speaker Labeling
The speaker labeling was developed from the

dataset obtained in the Results of Audio and
Text Labeling section. Through additional filter-
ing and quality control, the 100 highest-quality
speakers were selected for the final speaker la-
beling. Speaker labeling was conducted on this
cleaned data by clustering utterances by indi-
vidual speakers within each episode and merg-
ing speaker identities across the entire dataset.
The outcomes demonstrate clear identification of
speakers and utterances. This labeled data also
serves as the contribution dataset for the compe-
tition. Each speaker in the dataset has between
100 to 200 utterances, ensuring sufficient exam-
ples per speaker for robust modeling and evalu-
ation. This balanced distribution supports effec-
tive speaker-dependent tasks and speaker adapta-
tion experiments within the challenge framework.

Table 4. Statistics of speakers and utterances after
labeling and cleaning

Processed Data
# Speakers 100
# Utterances 16,551

Beyond the quantitative labeling results, we
further analyze the qualitative performance re-
garding the balance between naturalness and
identity preservation in the following subsection.

4.7. The Trade-off between Naturalness and
Speaker Similarity

Analysis of the top-performing systems re-
veals a significant technical trade-off between
speech naturalness (MOS) and target speaker
similarity (SMOS_TGT). Team Twinkle, utiliz-
ing an end-to-end diffusion-based framework,
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achieved the highest MOS of 4.29, but slightly
lower similarity compared to ViettelRoar in spe-
cific categories. This phenomenon suggests that
while diffusion models excel at generating high-
fidelity, smooth acoustic trajectories, they may
occasionally "oversmooth" the idiosyncratic vo-
cal fry or micro-prosodic details that define a tar-
get speaker’s unique identity. Conversely, the cas-
cade system of ViettelRoar maintained high sim-
ilarity by leveraging a flow-matching mechanism
that preserves more aggressive speaker-specific
features, though at the cost of a slightly higher
WER due to potential error propagation between
the ASR and TTS modules.

4.8. Testing Dataset

The test dataset comprises a diverse collec-
tion of audio samples with varying file types and
sources to ensure robust evaluation. It includes
recordings data, student data, and retrieved data
from YouTube (Table 5). The dataset is inten-
tionally diversified in terms of regional accents
and languages. Additionally, recordings were col-
lected both from student voice sessions and pub-
licly available YouTube content. During voice
conversion testing, cross-regional voice conver-
sion scenarios were included to assess model per-
formance on speakers from different geographi-
cal regions. The dataset also features samples of
singing to further increase diversity. This com-
prehensive and diverse test set aims to ensure that
the competing teams’ models have strong gener-
alization capabilities on unseen data and across
multiple speech variations. The evaluation setup
strictly follows a zero-shot voice conversion sce-
nario: test speakers do not overlap with training
speakers, ensuring that systems are assessed on
unseen identities. This setup challenges models
to generalize conversion capabilities beyond fa-
miliar speakers.

The dataset speakers are distributed by region
as follows: 14 from the North, 11 from the Cen-
tral region, and 8 from the South. This distribu-
tion ensures a diverse representation of regional

Table 5. Composition of the test dataset

Audio Sample Type Quantity
Internal recordings 8
Student Public Samples 11
Samples retrieved from YouTube 14

accents in the testing data.

5. Evaluation

Score = 0.4 ×
(
SMOS(ref, out) − SMOS(src, out)

)
+ 0.3 ×MOS + 0.3 × (100 −WER)

(1)
where
SMOS(ref, out): Speaker similarity between ref-
erence audio and output audio;
SMOS(src, out): Speaker similarity between
source audio and output audio;
MOS: Naturalness rating;
WER: Word Error Rate (calculated using Chunk-
Former [20]).

The composite scoring formula balances
three crucial aspects of voice conversion quality:
naturalness (MOS), speaker similarity (SMOS),
and linguistic content preservation (WER). Each
metric is essential to capture different facets of
conversion performance. The weighting scheme
assigns 40% importance to the difference be-
tween the speaker similarity of the reference and
the output minus that of the source and the output
(SMOS(ref, out) - SMOS(src, out)). This differ-
ence emphasizes the ability of a system to remove
source speaker identity and accurately capture
the target speaker’s characteristics, a key chal-
lenge in voice conversion. If the output preserves
too much source speaker information, it indicates
speaker leakage, which compromises privacy and
conversion fidelity. Meanwhile, MOS and WER
are weighted at 30% each to balance speech natu-
ralness and content intelligibility, both indispens-
able for practical VC applications.
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5.1. Evaluation Metrics

Three main criteria were chosen to evaluate
the voice conversion models, reflecting key as-
pects of model quality and effectiveness. MOS
and SMOS represent subjective evaluation met-
rics. MOS rates the naturalness and overall qual-
ity of converted speech on a scale from 0 to 100,
based on human listeners’ judgments. SMOS
measures how closely the converted speech re-
sembles the reference speaker’s voice, also rated
by human perceptual judgments on the same
scale. Grouping these together highlights their re-
liance on human evaluation. To ensure robust and
generalizable MOS and SMOS evaluations, each
contains 30 distinct pairs of audio samples. Each
pair is independently labeled by 5 randomly as-
signed human raters to reduce bias and increase
reliability. In total, 13 raters participated in the
evaluation process; all were students from Hanoi
University of Science and Technology.

Word Error Rate (WER): This metric evalu-
ates content accuracy by comparing the converted
speech to the source speech using a pretrained au-
tomatic speech recognition (ASR) model. WER
serves as an objective measure to assess how well
the converted audio preserves the original linguis-
tic information, ensuring that important content is
neither lost nor distorted during conversion.

These criteria are integrated into a compos-
ite scoring formula that balances speaker similar-
ity, content accuracy, and perceptual quality-three
fundamental factors for successful voice conver-
sion (see Equation 1).

The submitted models are evaluated using
three main criteria that reflect different aspects of
voice conversion quality. First, the SMOS mea-
sures how similar the converted speech sounds
compared to the reference speech, based on hu-
man perceptual ratings from 0 to 100. Second,
the WER evaluates the accuracy of the spoken
content by comparing the converted speech to the
source speech using a pretrained ASR model, also
scaled from 0 to 100. Finally, the MOS captures
the naturalness and overall quality of the con-

verted speech, rated directly by human listeners
on the same scale.

The overall score is calculated by combining
these measures as follows: 40% is given to the
difference between the speaker similarity of the
reference to the output and the speaker similarity
of the source to the output, 30% to the naturalness
score, and 30% to the complement of the WER
(calculated as 100 minus the WER).

Here, SMOS(ref, out) refers to the speaker
similarity between the reference audio and the
converted output audio, SMOS(src, out) refers to
the speaker similarity between the source audio
and the converted output audio, MOS refers to the
naturalness rating given by human listeners, WER
refers to the Word Error Rate calculated using the
ChunkFormer ASR model.

This multi-faceted evaluation approach en-
sures a balanced assessment of voice conver-
sion systems, taking into account preservation of
speaker identity, speech naturalness, and content
accuracy.

To aid reproducibility and fair comparison,
we provided participating teams with an objec-
tive evaluation toolkit implemented as a Gradio
application. This toolkit enables automated com-
putation of WER, facilitating consistent and con-
venient assessment across submissions.

5.2. Evaluation Results

Two main types of system architectures were
observed among the top teams: end-to-end and
cascade approaches. Teams Twinkle and VCL
utilized end-to-end systems, whereas ViettelRoar
and ProfessorAgasa adopted cascade architec-
tures.

5.3. Domain-wise Analysis

We perform a detailed evaluation of submit-
ted systems using both subjective and domain-
wise analyses to better understand system be-
havior under gender and dialect mismatch con-
ditions. All subjective scores reported below
are Mean Opinion Scores (MOS) on a five-point
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Table 6. Statistics of speakers and utterances after labeling and cleaning

Team MOS SMOS_TGT SMOS_SRC WER Final Score
Twinkle 4.29 ± 0.16 3.65 ± 0.23 1.17 ± 0.09 9.83 72.66
ViettelRoar 3.53 ± 0.21 3.66 ± 0.21 1.13 ± 0.08 12.95 67.53
VCL 3.72 ± 0.17 3.21 ± 0.20 1.27 ± 0.11 10.98 64.49
ProfessorAgasa 3.29 ± 0.22 3.18 ± 0.12 1.11 ± 0.07 12.84 62.40

Table 7. Summary of the Data and Methodological Choices of the Top 4 Teams in the Contest.

Team Data / Augmentation Approach Type
Twinkle Multilingual data (VCTK, JVS, Zeroth-

Korean, PhoAudioBook, VLSP2025);
SR augmentation for pitch and rhythm
diversity

End-to-end system based on Seed-VC
[21] with PhoWhisper-large semantic
encoder

ViettelRoar ViVoice (1000h Vietnamese) + VCTK
(English); phoneme-level training for
cross-lingual robustness

Cascade system: ChunkFormer [20]
+ F5-TTS [22]

VCL VLSP + VNCeleb [23] datasets; no ex-
plicit augmentation

End-to-end systems: MKL [24]

ProfessorAgasa PhoAudioBook + Vivoice, No augmen-
tation reported

Cascade system: ChunkFormer [20]
+ ZipVoice [25]

scale collected from human raters. Speaker sim-
ilarity (SMOS) is also human-rated on the same
1-5 scale and reported separately for similar-
ity between the output and the target reference
(SMOS_TGT) and similarity between the out-
put and the source (SMOS_SRC). The analysis is
based on n = 900 test conversions.

5.3.1. Gender-domain Analysis

Table 8 summarizes MOS and SMOS by gen-
der domain (same & cross).

The results reveal an interesting and some-
what counter-intuitive trend. Although one might
expect same-gender conversion to be inherently
easier due to closer vocal characteristics, the
cross-gender condition performs competitively
and in several cases even better. In terms of nat-
uralness, cross-gender samples achieve a MOS of
3.40, essentially matching the same-gender score
of 3.45. More notably, the target-speaker simi-

larity (SMOS_TGT) is higher in the cross-gender
setting (2.88 &. 2.65), suggesting that the model
is more capable of capturing target-specific cues
when the transformation requires a larger stylistic
shift.

This pattern is further supported by the
source-speaker similarity values (SMOS_SRC),
where cross-gender conversion shows a greater
reduction (1.30 & 1.79), indicating that the model
more effectively suppresses residual characteris-
tics of the source speaker in the cross-gender
case. Taken together, these findings suggest
that increased gender contrast may actually help
the model disentangle speaker identity, leading
to more distinct and perceptually clearer conver-
sions.

Fine-grained gender-pair analysis To better un-
derstand how gender interactions affect percep-
tual performance, we further decompose the eval-
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Gender-domain # MOS SMOS_SRC SMOS_TGT
same-gender 390 3.45 1.78 2.65
cross-gender 510 3.40 1.31 2.88

Table 8. MOS and SMOS_TGT by gender domain.

uation into four specific gender-pair directions.
Table 9 summarizes MOS, SMOS_SRC, and
SMOS_TGT for each pair.

Gender pair MOS SMOS_SRC SMOS_TGT
M→M 3.46 1.83 2.56
F→F 3.44 1.76 2.70
F→M 3.44 1.33 2.89
M→F 3.36 1.28 2.87

Table 9. MOS and SMOS scores for fine-grained
gender pairs.

Male-to-Male (M→M): This pair achieves
the highest MOS among same-gender conver-
sions (3.46), indicating relatively stable natural-
ness when both speakers share similar timbral and
pitch characteristics. However, SMOS_TGT re-
mains moderate (2.56), suggesting that although
the system preserves general speech quality, cap-
turing the fine-grained target identity within the
same gender-where voices may share overlapping
acoustic regions-remains challenging. The rela-
tively high SMOS_SRC (1.83) further indicates
stronger residual source leakage compared with
cross-gender settings.

Female-to-Female (F→F): F→F conversion
shows a similar pattern to M→M, with slightly
lower MOS (3.44) but a marginally higher
SMOS_TGT (2.70). This suggests that the sys-
tem captures female vocal traits somewhat more
accurately, potentially due to the broader pitch
flexibility and clearer formant structure in fe-
male speech. Nonetheless, the SMOS_SRC score
(1.76) indicates that, as with male–male conver-
sion, residual source traits remain more promi-
nent than in cross-gender conversions.

Female-to-Male (F→M): This direction
achieves the best overall target similarity

(SMOS_TGT = 2.89), showing that the system
handles pitch lowering and timbre broadening
effectively. The relatively low SMOS_SRC
(1.33) suggests that the model suppresses source
characteristics more successfully when shifting
from a higher-pitched to a lower-pitched voice.
MOS remains competitive (3.44), indicating that
the significant timbral and pitch transformation
required in this direction does not degrade
perceived quality.

Male-to-Female (M→F): M→F conversion
yields the lowest MOS among all pairs (3.36),
consistent with the greater difficulty of expand-
ing pitch range and modifying spectral envelopes
when converting male voices to female voices.
Despite this, SMOS_TGT (2.87) remains high,
showing that listeners still perceive the target
identity clearly. The lowest SMOS_SRC score
across gender pairs (1.28) further supports the
notion that large stylistic gaps-such as male to
female-help the model reduce source leakage
more effectively.

5.3.2. Dialect-domain Analysis
The linguistic diversity of Vietnam, primarily

categorized into Northern (N), Central (C), and
Southern (S) dialects, poses a non-trivial chal-
lenge for zero-shot voice conversion. Each dialect
is distinguished not only by its phonetic inventory
but also by its unique tonal contours and rhyth-
mic patterns. Table 10 summarizes the aggre-
gated performance metrics across same-dialect
and cross-dialect scenarios.

The macro-level results reveal a consistent
performance gap: same-dialect conversion con-
sistently outperforms cross-dialect conversion
across all perceptual dimensions. Specifically,
same-dialect samples achieve a higher MOS
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Table 10. MOS and SMOS_TGT by dialect domain

Dialect domain # MOS SMOS_SRC SMOS_TGT
same-dialect 420 3.51 1.56 2.84
cross-dialect 480 3.35 1.47 2.73

(3.51 vs. 3.35), suggesting that the diffusion-
transformer architecture finds it inherently eas-
ier to maintain naturalness when the source and
target share congruent prosodic structures. Inter-
estingly, the lower SMOS_SRC in cross-dialect
tasks (1.47) compared to same-dialect (1.56) indi-
cates that the model is more "aggressive" in sup-
pressing source identity when the dialectal mis-
match is high, whereas in same-dialect cases,
the acoustic similarity between source and target
makes perfect disentanglement more difficult to
achieve.

Although the differences are not large, the
results imply that dialectal mismatch introduces
additional variability in prosody and phonetic
realization, making the target identity slightly
harder to reproduce faithfully. Nonetheless, the
cross-dialect performance remains strong overall,
demonstrating that the model generalizes reason-
ably well across dialect boundaries.

Fine-grained dialect-pair analysis: To more
precisely characterize the impact of dialect mis-
match, we further analyze all major source–target
dialect combinations. Table 11 reports MOS and
speaker-similarity scores for each direction.

North→South: This direction achieves rela-
tively strong naturalness (MOS = 3.57), indicat-
ing that mapping Northern speech characteristics
onto Southern prosody is handled effectively by
the system. The SMOS_TGT score (2.64) is mod-
erate, suggesting that while the target identity is
captured reasonably well, the relaxed prosody and
more open vowel patterns of Southern speech still
present challenges.

South→Central: This pair exhibits con-
sistently strong performance, especially in
SMOS_TGT (3.20), the highest across all di-
alect directions. This suggests that the system

Table 11. MOS and SMOS scores for fine-grained
dialect pairs. N = Northern, S = Southern, C =

Central

Dialect pair MOS SMOS_SRC SMOS_TGT
N→N 3.35 1.66 2.82
N→S 3.57 1.47 2.64
S→N 3.54 1.76 2.63
S→S 3.93 1.32 3.12
S→C 3.69 1.44 3.20
C→N 2.89 1.34 2.58
C→S 2.47 1.23 2.63
C→C 3.27 1.65 2.37

captures the Central dialect’s distinctive tonal
and prosodic patterns particularly well when
starting from Southern speech, which provides a
rhythmically flexible baseline for transformation.
The MOS score (3.69) further indicates stable
naturalness.

Central→South: This is one of the lowest-
performing directions (MOS = 2.47), reflecting
the difficulty of reducing the rich tonal inven-
tory of Central Vietnamese into the comparatively
flatter Southern contour. Although SMOS_TGT
(2.63) remains reasonable, the drop in MOS indi-
cates audible artifacts likely caused by tone sim-
plification and timing adjustments.

South→North: Performance in this direction
is strong overall (MOS = 3.54), though the ele-
vated SMOS_SRC (1.76) suggests that Northern
tonal precision is challenging to reproduce and
may result in increased residual source character-
istics. SMOS_TGT (2.63) is moderate and con-
sistent with the complexity of the Northern di-
alect’s tone system.

North→North: As expected for a same-
dialect setting, this pair performs robustly, with
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MOS = 3.35. However, it also shows one of the
highest SMOS_SRC scores (1.66), indicating that
removing subtle source-specific tonal cues is dif-
ficult when source and target speakers share very
similar acoustic structures.

Central→North: This direction yields moder-
ate performance (MOS = 2.89), reflecting chal-
lenges in mapping Central tones into the analyti-
cally structured Northern tone system. Although
SMOS_TGT (2.58) remains acceptable, the re-
duction in MOS suggests perceptual artifacts re-
lated to tonal alignment.

South→South: This pair achieves the highest
MOS overall (3.93), illustrating that conversions
within the Southern dialect are particularly sta-
ble. SMOS_TGT is also high (3.12), indicating
that intra-dialectal identity features are captured
effectively. The relatively low SMOS_SRC (1.32)
further suggests that the system suppresses resid-
ual source traits more effectively when dialectal
patterns are consistent.

Central→Central: Although this is also a
same-dialect condition, it performs less favor-
ably than other intra-dialect conversions (MOS
= 3.27). The Central dialect exhibits high tonal
complexity and greater inter-speaker variability,
which likely increases the difficulty of recon-
structing target-specific identity cues, as reflected
in the lowest SMOS_TGT score among same-
dialect pairs (2.37).

6. Methodology Summary of Top Participants
In this section, we provide a comprehensive

technical analysis of the systems developed by the
top-performing teams. The diversity in architec-
tures, ranging from end-to-end diffusion models
to modular cascade pipelines, offers valuable in-
sights into the current state of Vietnamese voice
conversion.

6.1. Team Twinkle (Twinkle-VC): End-to-End
Diffusion-Transformer

The Twinkle team proposed an advanced end-
to-end framework based on the Seed-VC [21] ar-

chitecture, which utilizes a diffusion-transformer
backbone. To tailor the system for the Vietnamese
language, they integrated the PhoWhisper-large
[26] semantic encoder, providing a rich linguis-
tic foundation. The speaker identity is captured
using CAM++ [27], while speech reconstruction
is handled by the BigVGAN-v2 [28] vocoder.

To address the critical challenge of speaker
leakage, the team applied an OpenVoiceV2 timbre
shifter during the training phase. Furthermore,
they employed SR augmentation [3] along both
temporal and frequency axes to improve the dis-
entanglement of content and style. Leveraging a
multilingual corpus including VCTK, JVS [29],
Zeroth-Korean [30], and PhoAudioBook [31],
Twinkle-VC achieved the highest overall natural-
ness with a MOS of 4.29. This suggests that the
combination of self-supervised semantic features
and robust augmentation is highly effective for
zero-shot scenarios.

6.2. Team ViettelRoar: Modular Cascade Archi-
tecture

ViettelRoar adopted a robust two-stage cas-
cade paradigm. The first stage involves the
ChunkFormer [20] ASR model, which produces
high-accuracy transcriptions through masked
chunk-wise processing. These linguistic tokens
are then passed to a customized F5-TTS [22] mod-
ule. This synthesis component utilizes a flow-
matching Diffusion Transformer (DiT) to gener-
ate natural, target-conditioned speech.

The team utilized an extensive 1000-hour
Vietnamese dataset (ViVoice) combined with the
English VCTK dataset to enhance cross-lingual
generalization. This modular strategy allowed Vi-
ettelRoar to achieve the highest speaker similarity
score (SMOS_TGT of 3.66). While cascade sys-
tems may suffer from error propagation between
the ASR and TTS stages, the use of a large-scale
pre-trained synthesis backbone proved superior in
accurately mimicking the target speaker’s unique
vocal characteristics.
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6.3. Team VCL: Optimal Transport-based
Training-Free System

The VCL team introduced a training-free ap-
proach based on the MKL [24] framework. Un-
like traditional neural conversion methods that re-
quire gradient-based fine-tuning, this system em-
ploys the principles of optimal transport to map
source features to the target speaker’s distribu-
tion. The team utilized fine-tuned WavLM fea-
tures to enhance acoustic representation, drawing
data from the VLSP and VNCeleb [23] datasets.

By substituting the standard K-Nearest
Neighbors approach used in KNN-VC [32] with
an optimal transport solver, the VCL system
effectively minimized information loss during
the conversion process. This lightweight and
efficient design is particularly promising for
real-world applications where low latency and
minimal computational overhead are required.
Despite its efficiency, the model maintained a
competitive WER of 10.98, demonstrating the
viability of non-parametric methods in voice
conversion.

6.4. Team ProfessorAgasa: Efficiency-Oriented
Cascade System

Similar to the second-place team, Professor-
Agasa implemented a cascade architecture com-
bining ChunkFormer [20] for transcription and
ZipVoice [25] for synthesis. The primary design
goal of this system was to achieve high-speed in-
ference and model compactness.

The ZipVoice module enables fast, high-
quality zero-shot conversion, making it suitable
for deployment on edge devices. Although the
naturalness score (MOS 3.29) was lower than the
diffusion-based counterparts, the system demon-
strated excellent speaker disentanglement, as ev-
idenced by a low SMOS_SRC of 1.11. This
indicates that the source speaker’s identity was
successfully suppressed, a key requirement for
privacy-preserving voice conversion applications.

6.5. Comparative Discussion

The competition results reveal a fascinating
trade-off between the two dominant paradigms:
End-to-End (E2E) and Cascade architectures.
End-to-End systems, notably exemplified by
Team Twinkle, leveraged the latent representa-
tions of self-supervised models like PhoWhisper
to bypass the explicit phoneme bottleneck. This
approach allowed for a more fluid transfer of
prosody and emotion, as evidenced by their su-
perior MOS scores. However, E2E models are
typically more computationally intensive and re-
quire vast amounts of high-quality data to avoid
speaker leakage.

On the other hand, Cascade systems such
as ViettelRoar demonstrated high robustness in
terms of speaker similarity. By separating the task
into ASR and TTS modules, these systems can
leverage massive external TTS datasets to ensure
that the target voice identity is reproduced with
high fidelity. The "price" for this modularity is
often a slight increase in WER due to error prop-
agation: if the ASR module misinterprets a word,
the TTS will faithfully synthesize the incorrect
term. Our analysis suggests that for Vietnamese,
hybrid approaches that combine the linguistic sta-
bility of cascades with the prosodic richness of
E2E models-potentially through diffusion-based
refinement-might be the most promising path for
future research.

6.6. Self-Observed Qualitative Evaluation

Beyond the quantitative metrics provided by
MOS and SMOS, a rigorous qualitative audit of
the synthesized samples offers deeper insights
into the model’s capabilities in extreme and di-
verse scenarios. This manual inspection focus
specifically on prosodic stability, temporal align-
ment, and the preservation of emotional intensity
across varying acoustic environments.

In terms of prosody and temporal stability,
the model demonstrates a remarkable capacity
for handling non-standard speech rhythms and
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atypical vocal deliveries. A particularly no-
table observation was made during the analysis
of samples involving rapid-tempo utterances or
even singing voices. In cases where the target
reference contains fast-paced singing or rhyth-
mic speech, the diffusion-transformer architec-
ture successfully synchronized the semantic con-
tent with the target’s temporal structure without
compromising the clarity of consonants or the in-
tegrity of vowel durations. This indicates that
the semantic tokens derived from the ASR en-
coder are effectively decoupled from the tempo-
ral information of the target speaker, allowing the
vocoder to reconstruct high-fidelity speech even
under challenging prosodic constraints that would
typically cause alignment failures in traditional
cascade systems.

The robustness of the system was further
tested against the consistency of emotional inten-
sity across three distinct audio domains: studio-
quality recordings, internal device captures, and
wild audio extracted from YouTube. In con-
trolled environments, such as studio or clean in-
ternal recordings, the conversion remains excep-
tionally stable, faithfully preserving the subtle
emotional nuances-such as excitement, hesitation,
or calmness-inherent in the target speaker’s pro-
file. The model effectively maps the source lin-
guistic content onto the target’s affective space,
ensuring that the prosodic "color" of the emotion
is maintained throughout the utterance.

However, a slight "emotion weakening" ef-
fect was observed in samples sourced from noisy
YouTube environments. When the input au-
dio contains significant background interference,
non-stationary noise, or heavy reverberation, the
model’s inherent denoising mechanisms-while
successful in cleaning the signal-occasionally
"smooth out" the micro-prosodic variations that
carry emotional weight. This results in a phe-
nomenon we term spectral blurring, where the
converted voice loses a degree of its crispness
and emotional "edge" compared to conversions
originating from clean sources. Despite these

minor acoustic artifacts, the overall intelligibility
and speaker identity remain intact, suggesting that
while the model is robust to dialectal and rhyth-
mic variations, future iterations should incorpo-
rate more advanced noise-robust training objec-
tives to better preserve emotional high-frequency
components in "in-the-wild" scenarios.

6.7. Robustness Across Variable Acoustic Envi-
ronments

The variability in recording conditions-
ranging from studio-quality student recordings to
noisy YouTube "in-the-wild" audio-served as a
rigorous test for model robustness. We observed
that systems employing advanced denoisers like
DeepFilterNet [11] were able to maintain higher
MOS scores even when the source audio con-
tained background music or environmental inter-
ference.

However, for the YouTube "Vlog" and
"Game" categories, which often feature spon-
taneous speech with high emotional arousal,
most systems showed a noticeable drop in
SMOS_TGT. This suggests that current zero-shot
models still struggle to decouple the target’s iden-
tity from the source’s emotional state, leading to a
"prosody leakage" where the output voice sounds
like the target speaker but inherits the source
speaker’s unintended stress and tempo patterns.

6.8. Discussion and Error Analysis
The experimental results obtained from our

evaluation framework provide a comprehensive
overview of the current state of Vietnamese Voice
Conversion. A critical observation is the in-
herent trade-off between the perceptual natural-
ness of the synthesized speech and the fidelity
of the speaker’s identity preservation. While
diffusion-based architectures demonstrated a su-
perior ability to generate fluid and high-fidelity
acoustic trajectories, resulting in a leading MOS
of 4.29, they are not without significant limita-
tions. A rigorous spectral analysis reveals a per-
sistent "oversmoothing" effect within the gener-
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ated Mel-spectrograms, where the stochastic de-
noising process inadvertently suppresses the fine-
grained micro-prosodic variations that constitute
a speaker’s unique vocal signature. This loss of
spectral detail often manifests as a reduction in
"vocal fry" or breathiness, which are essential
cues for human listeners to distinguish between
similar timbres.

Furthermore, our findings underscore the ex-
treme sensitivity of Vietnamese phonology to
fundamental frequency (F0) modeling. Unlike
non-tonal languages where pitch primarily con-
veys intonation or emotion, in Vietnamese, the
six-tone system is the primary vehicle for lex-
ical distinction. Our error analysis highlighted
several failure cases where the model failed to
accurately reconstruct the sharp inflections re-
quired for "thanh ngã" or the deep glottalization
of "thanh hỏi". These subtle distortions in the
F0 trajectory do not merely affect the prosody;
they frequently result in a complete shift in se-
mantic meaning, which is reflected in the elevated
Word Error Rate (WER) across certain test sam-
ples. This suggests that for tonal languages, the
evaluation of VC systems must prioritize tonal in-
tegrity as a core component of linguistic intelligi-
bility.

6.9. Future Work
Building upon the insights gained from this

study, several critical avenues for future research
are identified to bridge the gap between exper-
imental results and practical deployment. Pri-
marily, we intend to investigate the integration
of explicit tonal-aware loss functions and multi-
task learning frameworks that jointly optimize for
speaker identity and tonal accuracy. By incorpo-
rating a dedicated F0 conditioning module, we
aim to provide the model with a more granular
control over the pitch contours, ensuring that the
subtle nuances of Vietnamese regional dialects-
each with their own tonal variations-are preserved
with higher fidelity.

Additionally, to address the "oversmoothing"

phenomenon identified in diffusion models, we
plan to explore the use of hybrid architectures
that combine the stability of diffusion-based gen-
eration with the high-frequency detail preserva-
tion of adversarial training. This could involve
the development of specialized vocoders capable
of reconstructing fine spectral details from la-
tent representations, thereby restoring the "natu-
ral roughness" of human speech. On the opera-
tional side, future work will also focus on model
compression and low-latency optimization tech-
niques. Our goal is to enable these sophisticated
VC systems to operate efficiently on edge devices,
facilitating real-time applications such as person-
alized assistive technologies for individuals with
speech impairments or secure voice anonymiza-
tion in sensitive communication environments.

7. Conclusion
This paper has presented a comprehensive

synthesis of the inaugural Vietnamese Voice Con-
version (VC) shared task, organized as a corner-
stone of the VLSP 2025 workshop. By curat-
ing and disseminating a high-quality, multi-genre
dataset consisting of 26 hours of speech from 100
diverse speakers, we have effectively addressed
the long-standing void of standardized bench-
marks for tonal language voice conversion. The
task has not only provided a rigorous framework
for performance evaluation but also catalyzed the
development of innovative architectures tailored
to the phonetic and prosodic intricacies of the
Vietnamese language.

The collective contributions from 18 partici-
pating teams have significantly redefined the per-
formance envelope of Vietnamese VC systems.
A critical analysis of the results suggests that
diffusion-based transformer architectures, partic-
ularly when integrated with advanced semantic
representations like PhoWhisper, represent the
current state-of-the-art, achieving a remarkable
MOS of 4.29. Furthermore, our findings reveal
a fundamental technical dichotomy: while end-
to-end models demonstrate superior fluidness in
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prosodic generation, cascaded frameworks main-
tain higher fidelity in speaker identity preser-
vation and linguistic accuracy, as evidenced by
lower Word Error Rates (WER). These outcomes
confirm that for tonal languages, the precise mod-
eling of F0 trajectories is not merely a technical
requirement but a prerequisite for preserving se-
mantic integrity.

Despite these advancements, the shared task
has unveiled persistent challenges that define the
roadmap for future research. Issues such as
the residual leakage of source speaker charac-
teristics and the performance degradation un-
der extreme dialectal variations remain primary
bottlenecks for real-world application. Moving
forward, our research will prioritize the explo-
ration of zero-shot adaptation techniques and the
improvement of model robustness in heteroge-
neous, low-resource environments. We believe
that the methodologies and benchmarks estab-
lished through the VLSP 2025 VC task will serve
as a vital catalyst for the community, driving the
evolution of voice conversion technologies to-
wards greater cultural authenticity and practical
utility.
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