
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Original Article

A Contract-Based Specification Method
for Model Transformations

Thi-Hanh Nguyen, Duc-Hanh Dang∗

VNU University of Engineering and Technology,
144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Received 31 December 2022
Revised 01 March 2023; Accepted 31 March 2023

Abstract: Model transformations play an essential role in model-driven engineering. However,
model transformations are often complex to develop, maintain, and ensure quality. Platform-
independent specification languages for transformations are required to fully and accurately express
requirements of transformation systems and to offer support for realization and verification tasks.
Several specification languages have been proposed, but it still lacks a strong one based on a solid
formal foundation for both high expressiveness and usability. This paper introduces a language called
TC4MT to precisely specify requirements of transformations. The language is designed based on a
combination of a contract-based approach and the graph theory foundation of triple graph grammar.
Specifically, we consider graph patterns as core elements of our language and provide a concrete
syntax in the form of UML class diagrams together with OCL conditions to visually and intuitively
represent such pattern-based specifications. We develop a support tool and evaluate our proposed
method by comparing it with current methods in literature.

Keywords: Model Transformation, Contract-Based Specification, Domain Specific Languagues,
UML/OCL, Triple Graph Grammars.

1. Introduction

In the context of model-driven engineering
(MDE), models are considered as primary arti-
facts, and model transformations are crucial el-
ements to automatically manipulate them with
such tasks as querying, synthesizing, and trans-

∗Corresponding author.
E-mail address: hanhdd@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.657

forming models. Many languages have been pro-
posed to implement model transformations, but it
still lacks effective methods, languages, and tools
to support specification and verification of trans-
formations. In practice, an effective transforma-
tion specification language often needs to be inde-
pendent of implementation platforms and should

1



2 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

be defined at a higher level of abstraction than
implementation languages. Moreover, a power-
ful transformation specification language needs to
be based on a solid formal foundation, capable of
fully expressing various features of model trans-
formations as what with complex software appli-
cations. Such a specification language is also re-
quired to be easy to use for different stakeholders.

Several transformation specification lan-
guages have been introduced in [1–6]. For the
requirement of expressiveness, current languages
in literature for transformations are often defined
as domain-specific languages (DSLs) to capture
specific features of transformations. The authors
in [1, 2, 5, 7] proposed a technique to specify
transformations as behavioral contracts, i.e., a
transformation specification would include pre-
conditions, postconditions, and invariants as re-
strictions on input models, output models, and
the relationship between them, respectively. An
advantage of the specification method is that it
facilitates the verification of correctness and ro-
bustness of model transformations. Several other
works [3, 4, 8] employ graph rewriting rules to
specify transformations and such a graph-based
formal environment could allow them to offer
support for the implementation and verification
of time-dependent properties of transformations.
The works in [8–10] focus on Triple Graph Gram-
mars (TGG) [11] as an effective approach for
specifying and implementing bidirectional model
transformations.

For the requirement of usability, transforma-
tion languages need to have an intuitive syntax
with a symbology familiar to modelers. Several
works proposed to represent constraints of trans-
formation in a textual syntax such as OCL (Object
Constraint Language) invariants [5, 7], Alloy [12]
and TL [2]. These methods could accurately ex-
press complex requirements but lack visualiza-
tion. Several other domain-specific languages are
proposed based on visual UML (Unified Mod-
eling Language) models to specify the model
transformations such as DSLTrans [3], DelTa [4],

Pamomo [1], and MTP [6]. Up to now, to de-
sign a platform-independent transformation spec-
ification language, using easy-to-use visual nota-
tions to precisely express complex requirements
of model transformations in MDE is still a chal-
lenging issue.

In this paper, a high-level visual declara-
tive language called as TC4MT1 is proposed to
specify transformation requirements. The lan-
guage TC4MT allows specifying different as-
pects of model transformation, including precon-
ditions, postconditions, invariants, and transfor-
mation rules as protocol contracts. The language
is designed based on graph patterns as core el-
ements. Pattern-based specifications in the lan-
guage are represented using the notation of the
UML class diagram together with OCL condi-
tions in a similar way to the MOF language [13],
the standard to define modeling languages in
MDE [14]. The TC4MT has a solid formal theory
foundation and could support bidirectional model
transformations since transformation rules in a
TC4MT language are defined as TGG rules.

The rest of this paper is organized as fol-
lows. Section 2 surveys related works. Section 3
presents a running example together with a re-
search question how to precisely specify require-
ments of a transformation using contracts. Sec-
tion 4 introduces a contract-based specification
language. Section 5 then explains the support of
the proposed specification method in quality as-
surance of model transformations. The support
tool and the effectiveness of the proposed spec-
ification method are presented in Section 6 and
Section 7. This paper is closed with a conclusion
and future works in Section 8.

2. Related work

We review current approaches in literature
related to implementation-independent transfor-
mation specification on the main issues: i) syn-
tax and semantics of a specification language;

1TC4MT means Test Cases for Model Transformations



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 3

ii) specification of transformation features; and
iii) purposes of the specification method.

First, source and target models of a model
transformation need to conform to metamodels
or other syntax definitions. There may be sev-
eral input (source) models used by a transforma-
tion, and possibly several output (target) mod-
els. A model transformation is termed update-in-
place if the resulting model includes both input
and output model. The high-level model transfor-
mation specification languages provide key con-
cepts to express features of model transforma-
tions. Model transformations can be specified by
many different means, e.g., formal languages [2,
12], visual specification languages with formal
semantics [1, 3, 4], or examples expressing real
transformation situations [15–17]. Formal lan-
guages [2, 12] use a textual concrete syntax based
on the constraint and computation expressions to
express complex requirements. Transformation
requirements can be expressed using a specific
textual syntax as mentioned in [2, 5, 7, 12] or
a visual graph as mentioned in [1, 3, 4, 8]. A
transformation specification should be readable
for different stakeholders including implementa-
tion developers, testers, and modeling experts;
Therefore, several works tend to employ general-
purpose languages like UML and OCL. The au-
thors in [5, 7] propose using OCL constraints ex-
pressions to express properties of model transfor-
mations. The works in [6] employ UML models
in order to express transformation requirements at
different abstraction levels, concerning the phases
of a transformation development life cycle. How-
ever, these approaches as regarded in [5–7] have
not yet shown formal semantics of transformation
specifications.

Second, in terms of functional coverage,
transformation specification languages should be
able to express different aspects of transformation
requirements. Current specification languages
and transformation implementations often allow
specifying contracts about the data types of in-
put and output models using meta-modeling tech-

niques. Metamodels are often represented in the
form of UML class diagrams enriched by OCL
constraints as the well-formed rules [13]. The
contract-based specification approaches [1, 3, 5,
12] often focus on expressing behavioral con-
tracts by preconditions, postconditions, and in-
variants. At the specification level, the works
in [3, 4, 8] use graph transformation rules to
define model transformation rules as functional
units of the transformation. A transformation
specification with contracts should also allow us
to capture valid sequences of state transitions.
Such contracts are referred to as protocol con-
tracts. Besides, in rule-based bidirectional model
transformations, trace elements are used to define
mappings between source and target elements.
Triple graph grammars (TGG) [11] uses a cor-
responding graph to connect source graph and
target graphs. An interesting feature of TGGs
is that it could support bidirectional transforma-
tions. The authors in [1, 4, 8] introduce languages
based on TGGs to specify transformations.

Finally, current transformation specification
methods in literature base on the contract-based
approach to support quality assurance purposes.
This approach could provide a formal specifica-
tion of requirements for transformation systems,
that is used as a basis for the next phases of the
development process. The authors in [18] pro-
pose a domain-specific language based on the lan-
guage ETL [19] to embed design patterns into
transformation specifications in Pamomo [1]. The
authors in [2] propose a similar domain-specific
language to represent transformation rules. In
general, current transformation specification lan-
guages often focus on static structural contracts
instead of on a full specification covering both
static and dynamic aspects.

3. Overview of Contract-based Specification
of Model Transformations

This section aims to provide a background
of contract-based specification of model transfor-



4 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

mations. To illustrate the different transforma-
tion contracts, a transformation example named
CD2RDBM between UML class diagram (CD)
models and relational database (RDBM) models
is considered.

3.1. Motivating Example
Figure 1 shows the simplified metamodels of

UML class models and relational database mod-
els. A model transformation specification ex-
presses the requirements by referring to the struc-
tural elements of the source and target metamod-
els. A model transformation often do not work
on entire all instances of the input/output meta-
model. Therefore, some constraints are added to
exclude model instances of a metamodel that will
not be handled by the transformation. For exam-
ple, this work is interested in transformation situ-
ations of the CD2RDBM transformation with the
following constraints on input models.

Figure 1. The source and target metamodels of
the CD2RDBM transformation.

pre1: A class does not inherit itself;

pre2: The name of a class is unique;

pre3: The name of attributes in a class is unique;

pre4: The subclass does not redefine attributes of
its super class;

pre5: The name of an association does not coin-
cide with the name of a class.

A certain transformation might need to guar-
antee that produced output models fulfill certain
conditions beyond metamodel constraints. The
followings are constraints on the generated out-
put models of the CD2RDBM transformation:

post1: A table name is unique;

post2: Two columns of a table must have distinct
names;

post3: A table cannot have more than one pri-
mary key column.

Besides constraints on input and output data,
a model transformation must ensure valid map-
ping relationships between input and output mod-
els. The followings are constraints on mapping
relationships for the CD2RDBM transformation.

r1 - Class2Table: it maps classes in a CD model
to corresponding tables;

r2 - Attr2Column: it maps non-primary at-
tributes to columns without the primary key
role;

r3 - PrimaryAttr2Column: it maps primary at-
tributes to columns that play the primary key
column;

r4 - MultiToMultiAss2Table: it maps multi-
valued aggregation and association to a new
associative table that relates the two original
tables;

r5 - SingleToMultiAss2Fkey: it maps aggrega-
tion and association relationships character-
ized by a single-valued end and a multi-
valued end (0..*, 1..*) to a foreign key that
relates two original tables;

r6 - SubClass2Table: it maps a subclass to the
table w.r.t. the super class; and an op-
tional rule for model refactoring after for-
ward transformation executions;

r7 - InheritanceFlattening: it flattens the inher-
itance hierarchy by copying the super class’s
attributes down to all of the subclasses and
removing the super class from the model.

While the above requirements describe valid
mapping relationships, the following invalid map-
ping relationships state forbidden situations of the
CD2RDBM transformation.



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 5

inv1: If the class model has two classes in an
inheritance relation, then the RDBM model
should not only contain two distinction ta-
bles mapping to these classes;

inv2: If the class model has two classes in an
inheritance relation, then the RDBM model
should not only contain a corresponding ta-
ble mapping to the subclass without a corre-
sponding table mapping to the super class;

inv3: If the class model has a class, then the
RDBM should not have two distinction ta-
bles that map to this class.

In MDE, a model transformation should be
developed as a typical software: i) At the spec-
ification phase, transformation requirements can
be expressed at different abstraction levels by dif-
ferent means such as natural language, modeling
language, and formal language; ii) The transfor-
mation is then realized by an implementation lan-
guage; and iii) The implementation of the trans-
formation needs to be checked whether it satisfies
the transformation requirements, so that the qual-
ity of the transformation could be ensured. Test-
ing tends to be a promising technique for validat-
ing and verifying model transformations. To ef-
fectively apply this technique, suitable transfor-
mation specification techniques are required to
support the analysis and design of test conditions.

3.2. Model Transformations Contracts
Design by contracts [20] was introduced as

a means to increase quality in terms of the cor-
rectness and robustness of the constructed soft-
ware. It allows formalizing requirements as con-
tracts which may be used to test the software.
Another advantage of contracts is that they tend
to describe what a piece of the software is being
done instead of how it is done. In MDE, design
by contracts also is an approach for the quality
assurance of model transformations as regarded
in [1, 5, 7]. Transformation contracts could offer
means to analyze at the specification level prop-
erties of the transformation and to verify them us-

ing black-box testing techniques. Similar to con-
tracts introduced in [21], there are three typical
types of transformation contracts regarding the
functional aspect of software: type contracts, be-
havioral contracts, and protocol contracts.

Type contracts are defined as restrictions on
the types of manipulated data. With model trans-
formations, they ensure that source/target models
conform to their metamodels.

Behavioral contracts include preconditions,
postconditions, and invariants. The precondition
part, e.g., the requirements pre1-pre5 in the ex-
ample transformation, puts restrictions on the re-
quired input models such that the transforma-
tion is applicable. The postcondition part, e.g.,
the requirements post1-post3, is used to express
whether or not an output model should contain
certain configurations of elements. The invariant
part includes conditions that need to be satisfied
by any pair of source-target models of a correct
transformation. Positive (negative) invariants are
used to specify valid (invalid) relations between
source and target models, e.g., the requirements
r1-r7 correspond to positive invariants, and inv1-
inv3 correspond to negative ones.

Protocol contracts specify the global behav-
ior of source/target models in terms of synchro-
nizations between method calls w.r.t. state transi-
tions of the transformation system. The aim of
such a contract is to describe the dependencies
between services provided by a component, such
as sequence, parallelism, or shuffle. They are
considered as protocol contracts and often repre-
sented by transformation rules.

4. TC4MT: A Transformation Specification
Language

This section introduces the TC4MT language
to specify model transformations. The main ob-
jective of the TC4MT language is to represent
requirements of a transformation explicitly as a
contract-based specification: It is a declarative,
formal, visual language designed to express trans-



6 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

formation contracts. The TC4MT could support
three contract levels, as explained in Section 3.2:
type contracts, behavioral contracts, and protocol
contracts. Designing such a language to repre-
sent contracts would bring out two advantages:
i) the definition of contracts is implementation-
independent, i.e., not tied to a particular tar-
get transformation language, which is especially
favorable in MDE since no dedicated standard
transformation language has been brought for-
ward so far [14, 22]; and ii) the designer could
specify explicitly desired properties of a trans-
formation before implementation, which may be
used for guiding the implementation.

The TC4MT language represents transforma-
tion requirements based on TGG rules and graph
patterns. Such a TGG-based semantics would
provide a formal basis to verify quality properties
of a model transformation. For example, the val-
idation of source and target models is performed
by checking the fulfillment of contracts. Besides,
transformation invariants expressing the relation-
ship between source and target models are the ba-
sis for checking the semantic preservation prop-
erty between source and target models. Analysis
of the dependency relationship between operation
rules in an execution scenario allows defining test
scenarios to verify the behavior of the switch such
as termination and convergence.

4.1. Abstract Syntax

Figure 2 shows the metamodel for the ab-
stract syntax of the TC4MT language. It con-
sists of four basic parts: (A) Meta-concepts
to express contracts (preconditions, postcon-
ditions, invariants, and transformation rules);
(B) Meta-concepts to specify transformation
rules; (C) Meta-concepts to capture model struc-
ture; and (D) Meta-concepts to express test suites.

4.1.1. Meta-concepts to Express Contracts
The followings are meta-concepts for con-

tract specification, as shown in Figure 2(A).

Metamodel. This meta-concept is used to ex-
press both source and target languages. These
languages together with TC4MT are designed
based on the MOF [13] standard for the metamod-
eling approach.
TrafoSpecification. The meta-concept is used
to represent a transformation as a composition
of Preconditions and Posconditions of the
transformation and Invariants. Each condi-
tion of the transformation is expressed on patterns
w.r.t. structure elements and their relationship,
i.e., part of the metamodel. The meta-concept
Pattern is further explained in Section 4.1.2.
Precondition. A precondition is expressed by
a pattern as a restriction on input (source) mod-
els. A transformation specification might consist
of several preconditions that can be positive pat-
terns to express required conditions or negative
patterns to express forbidden conditions on input
models. A valid model transformation refuses to
take invalid source models as the input.
Postcondition. A postcondition is expressed by a
pattern as a restriction on output (target) domain
models. A transformation specification might
consist of a set of postconditions. Postconditions
can be positive patterns to express required con-
ditions or negative patterns to express forbidden
conditions on generated output models. Faults
will arise if any generated output model does not
satisfy postconditions.
Invariants. The meta-concept expresses con-
ditions that a transformation needs to fulfill at
any moment in time. Within our approach,
Invariants can be expressed by triple patterns.
The meta-concept TriplePattern is further ex-
plained as below.

4.1.2. Meta-concepts to Specify Rules
The meta-concepts for rule specifications are

shown as in Figure 2(B).
Pattern. As mentioned above, the meta-
concept Pattern represents a set of snap-
shots, each of which includes instances of meta-
classes and links (Reference) between them.



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 7

Figure 2. Metamodel of the language TC4MT.



8 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

A pattern might be attached with constrains
(PatternConstraint) as restrictions on the
snapshots of the pattern. A PatternConstraint

can be a Pattern and often expressed in the
form of OCL conditions. Each Object includes
a set of Attributes, each of which might be
restricted by AttrConstraints, including value
assignment or type binding.
TriplePattern. A TriplePattern consists of
three patterns (the source, the target, and the op-
tional corresponding pattern) that can are con-
nected together by links.
TrafoRule. The meta-concept is to represent
transformation rules as functional units of a
model transformation. A TrafoRule can be seen
as an extension of an invariant by adding actions
to manipulate model elements when executing
transformation rules. Actions are often included
in the specification of the time-dependent behav-
ioral semantics of the transformation.
Matching & Enforcing. A transformation rule
consists of negative application conditions (NAC)
and two triple patterns (matchingPart and
enforcedPart). The patterns is used to match
and enforce the rule, i.e., applying the rule for a
graph rewriting step, as explained in Section 4.2.

4.1.3. Meta-concepts to Capture Model Structure
Figure 2(C) shows MOF meta-concepts

EClass, Property, and EReference to rep-
resent model elements: Each EClass consists
of Properties that describe the instance’s data
values. Each EReference consists of two
EClasses at the two ends associated with differ-
ent roles. Each role corresponds to a property on
the opposite side represented by the opposite as-
sociation between the two EClasses.

4.1.4. Meta-concepts to Express Test Suites
The meta-concepts to represent test suites

are shown in Figure 2(D). A TestSuite in-
cludes test cases, each of which contains test-
input models (TestInput) and output asser-
tions (Assertion). The test inputs can be de-

fined based on preconditions, the source pat-
tern of invariants, and the source part of
transformation rules within test case descrip-
tions (TestCaseDescription). Output asser-
tions can be directly derived from the postcondi-
tions, the target pattern of invariants, and the tar-
get part of transformation rules. Preconditions as
discussed in [12, 23, 24] allow us to define par-
titioning conditions based on the type of class’s
attributes and association multiplicities.

4.2. Operational Semantics
This section aims to provide an operational

semantics of TC4MT. Basically, transformation
rules in a TC4MT specification that are referred
to as so-called positive invariants expressing valid
relationships between source and target models.
The execution semantics of the TC4MT specifi-
cation is mapped to a transformation system of a
corresponding triple graph grammar.

Figure 3. The operational rules are derived from
a declarative TGG rule.

Definition 1. (Flattening Triple Graph) A

triple graph G = (GS sG← GC tG→ GT ), the
flattening construction FG of graph G is a
plain graph defined by the disjoint union
FG = GS + GC + GT + LinkS (G) + LinkT (G).
The FG consists of the following components.

• Three subgraphs GS , GT , and GC are the
source, target, and correspondence graphs,
respectively. They are plain graphs with
edges and nodes (the edge and node sets
of a graph G are denoted GE and GV , re-
spectively). The subgraph GC only contains



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 9

Figure 4. The declarative structure of the triple rule Attr2Column.

nodes but not edges. A graph G with edge
set GE and node set GV

• The additional edges in LinkS (G) ={
(x, y)|x ∈ GC

V , y ∈ GS
V , sG(x) = y

}
define the mappings sG from the correspon-
dence graph to the source graph.

• The additional edges in LinkT (G) ={
(x, y)|x ∈ GC

V , y ∈ GT
V , tG(x) = y

}
define the mappings tG from the correspon-
dence graph to the target graph. ∀x ∈ GC

V |
∃(y1, y2), ((x, y1) ∈ LinkS (G)), ((x, y2) ∈
LinkT (T )) ⇔ (y1 ∈ GS

V ) ∧ (y2 ∈ GT
V ) ∧

(sG(x) = y1) ∧ (tG(x) = y2)).

Definition 2. (Transformation Rule) A trans-
formation rule tr = (L −→ R, AC) = ((GS L ←
GCL → GT L) −→ (GS R ← GCR → GTR), AC)
consists of two flattened triple graph
L = (GS L,GCL,GT L, LinkS (L), LinkT (L)),
R = (GS R,GCR,GTR, LinkS (R), LinkT (R)) of the
same flattened triple graph. The triple graphs for
the LHS and the RHS of the rule are marked and
distinguished by two attributes isTranslated and
status of each node. AC = (ACSL,ACCL,ACTL)
is the application condition of the rule, where
ACS L, ACCL, and ACT L are constraints on the
GS L, GCL, and GT L of the rule, respectively.

Definition 3. (Transformation Specification) A
transformation specification is a tuple TS =

(Ppre, Ppost, Pinv,TR), where Ppre (Ppost) are the
preconditions (postconditions) of the transforma-
tion, Pinv are invariants, and TR are rules.

Note that a transformation rule in this defini-
tion corresponds to a triple rule (a.k.a. a TGG
rule) of a triple graph grammar. The pre- and
postconditions of a transformation specification
are conditions on a particular domain w.r.t. a
metamodel represented as a type graph [11, 25].
Invariants and transformation rules are repre-
sented by typed triple graphs. A type triple graph
can be seen as a combination of two plain graphs
for source and target parts and additional edges
to connect them with each other. This composite
graph is referred to as a flattening triple graph.

As depicted in Figure 3, a declarative TGG
rule express a co-evolution relationship between
the source and target models. Besides, there exist
operational TGG rules derived from a declarative
TGG rule for different transformation scenarios,
e.g., forward, backward, and integration transfor-
mation scenarios. An integration transformation
aims to define trace elements of a corresponding
graph to relate the source and target models.
Example. Figure 4 describes the declarative
TGG rule Attr2Column for the example transfor-
mation. The operational rules derived from the
Attr2Column rule for the forward, backward, and
integration scenario are shown as in Figures 5, 6,
and 7, respectively.



10 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Figure 5. The forward TGG rule Attr2Column.

Figure 6. The backward TGG rule Attr2Column.

Figure 7. The integration TGG ruleAttr2Column.



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 11

Figure 8. The application of the operational rule Attr2Column.

We explain how a model transformation sce-
nario is realized by applying operational TGG
rules as follows. Given an initial target graph
so-called the host graph G and a set of derived
rules. At initial step, all the elements of G have
the state isTranslated = f alse. Applying an op-
erational rule on the G would replace the LHS
structure found in G (by matching the rule) with
the corresponding RHS structure. This rule ap-
plication also updates the value of marked at-
tributes of nodes in the host graph. The transfor-
mation scenario finishes when all elements of G
are marked by setting isTranslated = true. Note
that the application conditions (AC) of a rule are
used as the pre- and postcondition of each trans-
formation step. Application conditions might be
divided into two kinds: positive application con-
ditions (PACs) and negative ones (NACs). PACs
(NACs) require (forbid) the presence of certain
structures in the graph for the rule to be applied.
Each PAC / NAC also consists of three parts (SL,
CL, and TL) corresponding to the parts of AC.

Figure 8 shows on the RHS the current state
of the host graph, resulted from applying two
rules rF

1 (Class2Table) and rF
6 (SubClass2Table).

These rules are specified similarly to the rule r2
(Attr2Column) as shown in Figure 5. Due to the
limited space the specification of these rules is
not shown in this paper. Instead of that, we focus
on explaining how the rF

2 is applied on this situa-

tion. At the current state (w.r.t. the graph on the
RHS of Figure 8), the transformation system has
not reached the ending state yet because a1 has
not been transformed (isTranslated = f alse).
Searching for an executable rule will find a match
for the rF

2 rule, as shown in Figure 6. Note that be-
fore matching a rule, each nodes of the LHS could
switch its isTranslated from false to true and
its status from 1 to 0. In this case, on the host
graph a1.isTranslated becomes true so that the
rule rF

2 could be matched. The match includes
the nodes on the host graph c1, a1, ct1, and t1
corresponding to the LHS of the rule. The transi-
tion will end when all elements of the host graph
reaching the state isTranslated = true.

Note that the settings for the isTranslated is
changeable for each derived operational rule. For
example, with forward transformation all the el-
ements within the LHS (GS R,GCL,GT L) would
have isTranslated = true, and all the elements
within the RHS have isTranslated = f alse. The
attribute isTranslated of all NAC’s elements is
set to true as well. Each node of the host graph
is defined with another attribute status in order to
track rule applications:

• status = 0 if the element belongs to either
the LHS (i.e., unchanged when applying the
rule).
• status = 1 if the element belongs to the RHS

and is newly created by the rule application.



12 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Figure 9. The declarative triple rule FlatteningInheritance.

• status = 2 if the element is deleted by the
rule application, i.e., it belongs to the RHS
and does not belong to the LHS.

• status = −1 if the element is mentioned in
a positive application condition of the rule
or the required conditions of the transfor-
mation, i.e., positive pre- and postconditions
and invariants.

• status = −2 if the element is represented in a
negative application condition of the rule as
well as the forbidden conditions of the trans-
formation, i.e., negative pre- and postcondi-
tions and invariants.

The key idea of a forward (backward, inte-
gration, and co-evolution) transformation using
TGGs is to preserve the given source (target or
both) model and to add the missing target and cor-
respondence elements. Original TGG rules have
been defined as non-deleting triple rules [11],
however, within the context of QVT [26], in many
cases, model elements should be removed us-
ing deleting rules. In TC4MT, we could specify
deleting rules by assigning these attribute-value
pairs on a deleted elements: status = 2 and
isTranslated = true.

Example. The rule FlatteningInheritance in Fig-
ure 9 flattens the inheritance relationships in a
class model by first copying the entire attributes
(a1) of the superclass (c1) to attributes of its sub-
class (c2), and then removing the superclass and
its attributes.

For forward transformation scenarios, the
ACSL of a rule (i.e., AC on GSL of the rule) is part
of the precondition of the rule, while the ACTL

(i.e., AC on GTL of the rule) becomes part of the
postcondition of the rule. A similar mechanism is
applicable for backward and integration transfor-
mations.

4.3. Concrete Syntax
Requirements of a TC4MT specification are

expressed by graph patterns of a typed attributed
graph. For example, Figure 10 depicts the
declarative rule PriAttribute2Column. Figures 13
and 14 depict a negative precondition and a nega-
tive invariant, respectively.

5. Quality Assurance of Transformations

Based on our contract-based specification
method of transformations, this section intro-
duces several techniques to ensure quality of



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 13

Figure 10. The transformation rule PriAttribute2Column in TC4MT.

transformations. First, we explain how to main-
tain the consistency among contracts by checking
their well-formedness. Then, we provide means
to on-the-fly verify the fulfillment of contracts
during a transformation execution. Finally, we
outline a specification-driven testing framework
for model transformations.

5.1. Checking the Well-formedness of Contracts

A TC4MT transformation specification is for-
mally represented using contracts in the form of
graph patterns. We need to guarantee the well-
formedness of contracts for consistency so that
such a following error does not occur: A contract
may never be satisfied when there exists a neg-
ative precondition pattern occurred in the source
pattern of a positive invariant, or a precondition
included within another precondition. In order to
statically detect such errors, based on the formal
semantics of TC4MT, we introduce a technique
reasoning on i) metamodel coverage; ii) redun-
dancies; and iii) contradictions on contracts, as
detailed in the following.

First, obtaining metamodel coverage means
that any element of source and target meta-
models of a transformation is mentioned in at

least one contract of the transformation specifi-
cation. This allows us to check the application
domain coverage of the specification. The graph-
ical representation of a TC4MT specification al-
lows us to quickly detect whether an element of
source/target metamodels has been referenced by
any pattern of the specification and how the el-
ement is used (i.e., in positive or negative pat-
terns). All the elements of source and target meta-
models as shown in Figure 1 are referenced by
at least one transformation contract so that full
metamodel coverage is achieved.

Second, redundancies in a contract set can be
detected by a static analysis. A redundant pat-
tern can be safely dropped to produce a simpler,
cleaner set of contracts with the same seman-
tics. Table 1 shows specific situations of redun-
dant contract sets: i) If there exists an inclusion
relationship between two graph constructs speci-
fying positive preconditions (or postconditions),
then the graph covered within the larger graph
will be redundant; ii) If there exists two mutually
exclusive negative preconditions (or postcondi-
tions), then the graph with the larger graph struc-
ture will be redundant; iii) If there exists two neg-
ative invariants that share the same source (target)



14 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Table 1. Redundancy detection in specification

Contracts Redundancy
Given two positive pre/postconditions p1, pp2 p1 ⊆ p2 ⇒ p1 is redundancy
Given two negative pre/postconditions p1, pp2 p1 ⊆ p2 ⇒ p2 is redundancy
Given two positive invariants (rules)
I1 =
(
ps

1, p
t
1, p

c
1, LinkS 1, LinkT1

)
I2 =
(
ps

2, p
t
2, p

c
2, LinkS 2, LinkT2

)
(
pS

1 = pS
2

)
∧
(
pT

1 ⊆ pT
2

)
⇒ I1 is redundancy(

pS
1 ⊆ pS

2

)
∧
(
pT

1 = pT
2

)
⇒ I2 is redundancy

Given two negative invariants
I1 =
(
ps

1, p
t
1, p

c
1, LinkS 1, LinkT1

)
I2 =
(
ps

2, p
t
2, p

c
2, LinkS 2, LinkT2

)
(
pS

1 = pS
2

)
∧
(
pT

1 ⊆ pT
2

)
⇒ I2 is redundancy(

pS
1 ⊆ pS

2

)
∧
(
pT

1 = pT
2

)
⇒ I1 is redundancy

graph structure and the remaining target (source)
graph samples are mutually inclusive, the invari-
ant with the larger target graph structure will is
redundant; and iv) If two declaration rules have
the same source graph pattern, then the rule with
a smaller target graph sample will be redundant,
otherwise, if two rules have the same target graph
pattern but have an inclusive source graph pattern,
then the rule having a larger sample of the source
graph will be redundant.

Finally, conflicts between contracts can also
be statically detected. For example, a conflict can
occur if a negative pre- or post-condition is in-
cluded within a positive pre- or post-condition.
The conflict between the two preconditions (affir-
mative and negative) makes it impossible to exist
a model that satisfies the positive contract without
violating the negative contract.

5.2. Checking the Fulfillment of Contracts

The paper provides a technique to on-the-
fly verify contracts in TC4MT during a trans-
formation execution. The basic idea is to trans-
late contracts of a TC4MT specification into
OCL constraints. The Object Management Group
(OMG) [13] introduced the Meta-Object Facil-
ity (MOF) standard to define metamodels and
the Object-Constraint-Language (OCL) standard
to define model’s constraints in terms of pred-
icate logic. Graphical representation of con-
tracts facilitates the transformation analysis and

design while at the transformation implementa-
tion phase, OCL contracts are easier to integrated
in the transformation implementation languages
designed according to the MOF standard such as
QVTr [26], ATL [27], RTL [28], and ETL [19].
Classifying terms is an effective instrument used
to automatically validate input models and out-
put models of a model transformation as regarded
in [29, 30].

Figure 11. The OCL schema to translate
preconditions.

Figure 12. The OCL schema to translate invariants.

First, preconditions are translated into
boolean OCL constraints as source classifying
terms using the OCL schema shown in Fig-
ure 11. As illustrated in Figure 11, to translate



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 15

Figure 13. Translating a precondition into the corresponding OCL constraint.

graph patterns into OCL expressions, the OCL
schema is matched with the graph pattern of each
contract. In the case of negative preconditions,
i.e., preconditions contain objects with the
attribute status = −2, the negation operator not
appears at the first line of the schema. The func-
tion conditions is used to check constraints on the
underlying objects and their properties: If there
exist two objects o1 and o2 with the same type
(typeo1 = typeo2) then the condition o1 <> o2
will be added. The association between two
objects will be translated into a corresponding
condition, either o1.role2 → includes(o2) or
o2.role1 → includes(o1). We omit the condition
to check if an object attribute is undefined.
The other OCL constraints of a graph pattern
will be included in the function conditions.
An equal comparison between object attribute
values excluding object attributes status and
isTranslated will be created to represent the
AttributeConstraint attribute value constraints,
the OCL schema is interested in the above
properties and ignores attributes with unspecified
value (Unde f ined). Also, if the contract has
additional OCL binding expressions for complex
expressions, the expression will be added to
the conditions function of the resulting OCL
expression. The partial expressions in conditions
are combined together by the operator and.
Example. Figure 13 illustrates translating a pre-
condition to an OCL expression. Note that since

both pre- and postconditions specify constraints
on a single modeling domain, the translation of
postconditions is performed in a similar way.

Second, we use the OCL schema as shown
in Figure 12 to translate invariants into boolean
OCL expressions. The OCL scheme for invari-
ants consists of two parts linked together by the
and operator (line 4). If the source-target con-
tract is a negative invariant, the not operator is
added before the boolean OCL expression cor-
responding to the target graph element (line 5).
The two parts of the generated OCL expression
are created respectively from source and target
graphs similarly to the translation of pre- and
post-conditions. Figure 14 illustrates the trans-
lation of an invariant to two boolean OCL con-
straints linked by the relational operator ’AND’.

Finally, we explain how to check the correct-
ness of a model transformation with OCL expres-
sions translated from contracts: i) For each pair of
OCL expressions translated from positive invari-
ants, if the source model satisfies the OCL ex-
pression w.r.t. the source graph, then the target
model must also satisfy the OCL expression w.r.t.
the target graph; ii) For each pair of OCL expres-
sions translated from negative invariants, if the
source model satisfies the OCL expression w.r.t.
the source graph, the target model must not sat-
isfy the OCL expression w.r.t. the target graph;
and iii) The transformation is correct only if these
test conditions are fulfilled.



16 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Figure 14. Translating an invariant into the corresponding OCL constraint.

5.3. Specification-Driven Testing for Model
Transformations

We provide a method to test model trans-
formations as outlined in Figure 15. First, the
language TC4MT is offered for the designer to
specify transformation requirements. The de-
veloper takes as input the TC4MT specification
and employs a platform-dependent implementa-
tion language (including QVTr [26], ATL [27],
and RTL [28]) to implement the transformation,
as shown in label 2a. The framework also sup-
ports the feature to take such a transformation im-
plementation as input in order to obtain a corre-
sponding specification in TC4MT, as illustrated
in label 2b. Based on a formal semantic of the
high-level specification language like TC4MT, it
opens a possibility to employ High-Order Trans-
formations (HOTs) as discussed in [14] to realize
the bidirectional transformation (w.r.t. label 2b).

Second, two methods are introduced to an-
alyze a transformation specification for the test
case generation. The first method (as shown
in label 3a) is partition analysis on the input and
output modeling spaces of a model transforma-
tion based on metamodels and behavior contracts.
Then partition conditions are combined together
to generate efficient test cases (avoid duplica-
tion and redundancy) with objectives (as shown
in label 4a): i) maximizing metamodel cover-
age; ii) maximizing specification coverage; and
iii) minimizing number of test cases. The sec-
ond method is to analyze the transformation rules

specifying the dynamic view of a model transfor-
mation, to detect rule dependencies that impact
on the applicability of the rule chain (as shown
in label 3b). Applying a grammar testing ap-
proach to the TGG of the TC4MT transforma-
tion specification, detected rule dependencies can
be used to structure applicable rule chains for
constructing test case descriptions or inapplica-
ble rule sequences for the exception/robustness
testing of model transformations (as shown in la-
bel 4b). Test case descriptions are graph patterns
which also could be translated into boolean OCL
constraints similar to graph patterns representing
contracts.

Third, in both above testing methods, the in-
put test conditions are expressed by boolean OCL
constraints that can be combined according to
the test criteria then used to generate test models
automatically using OCL constraint solvers (e.g.
KodKod [31]), as shown in labels 5a and 5b. De-
pending on the quality property to be tested, as
depicted in labels 6a and 6b, test oracles are con-
structed by combining boolean OCL constraints
representing OCL assertions on expected output
models. The benefit of OCL assertions is that they
can be combined with the relational operators to
form complex output conditions as well as used
to evaluate actual output models using model val-
idation tools (e.g. USE model validator [29]), as
shown in label 7.

Finally, depending on the input test condi-
tions and the corresponding output test oracles



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 17

Figure 15. A specification-driven testing framework for model transformations.

designed based on the quality objective to be
tested, a test report will be created. The test report
indicates passed or failed test cases of the trans-
formation implementation. Failure case analysis
helps transformation developers debug the trans-
formation implementation or review the correct-
ness of other artifacts. Details of specification-
based testing methods are discussed in our other
works.

6. Tool Support

We develop a support tool on the UML-based
Specification Environment (USE) [29]. The USE
editor allows to represent a transformation defini-
tion in the form of a UML class diagram enriched
with OCL constraints. Graph patterns of transfor-
mation contracts are represented by UML object
diagrams conforming to the UML class diagram.

As shown in Figure 10, the pattern of the Pri-
Attribute2Column is represented as a flattened
triple graph in the form of an object diagram.
The preconditions, postconditions, negative in-
variants, and transformation rules in TC4MT for
the CD2RDBM transformation are also captured

by object diagrams. These object diagrams are
created using the GUI or the Simple OCL-like
Imperative Language (SOIL) of the USE editor.

We also develop a plugin for USE as shown
in Figure 16 to analyze the TC4MT specification
of a transformation in order to define test con-
ditions. First, the window MetamodelAnalysis
(red label 1) helps us to automatically generate
source classifying terms [30] from the partition
analysis on the source metamodel. Then, the win-
dow SpecificationAnalysis (red label 2) allows us
to load patterns of preconditions, postconditions,
and invariants (including transformation rules as
positive invariants) and translate them into classi-
fying term using the OCL schemes. Finally, with
the windows RuleAnalysis (red label 3) we could
load rule specifications and analyze rule depen-
dencies for the test specification.

7. Evaluation

We consider TC4MT as a specification lan-
guage and adapt from [32] the following three
criteria to evaluate it: i) expressiveness; ii) for-
mal definition; and iii) usability. The first one



18 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Figure 16. The specification analysis tool.

expressiveness concerns the ability of a specifi-
cation language to fully and accurately express
various aspects of problems within its applica-
tion domain. The second one formal definition
concerns with providing a body of knowledge for
other activities of the development process, espe-
cially in the context of activity automation. The
third one usability refers to the ability of the lan-
guage to support stakeholders in terms of intuitive
interface capabilities, the availability of tools and
environments, and familiarity with the syntax.

7.1. Expressiveness

Expressiveness is one of the most cited prop-
erties of model transformation languages as re-
garded in [33]. This is also a key motivation in
the driving force behind the design of domain-
specific languages. A language should be able
to fully and exactly express all properties of in-
terest of its application domain including com-
plex applications. To evaluate expressive power,
we first consider the capability of fully specify-
ing the functional coverage of a model transfor-
mation which includes input constraints, output
constraints, and input-output constraints. Simi-
lar to generic software, functional requirements
of a model transformation system also are ob-
served in both data and behavior views which
should be specified for requirements analysis pur-

poses. Besides, a transformation specification
language needs to support the specification of
complex cases of application problems in its ap-
plication domain. The work in [34] proposed the
feature model that makes explicit the different de-
sign choices for model transformations with com-
plex features such as bidirectional transformation,
tracing, synchronization, and deleting rules.

Based on the functional coverage and the fea-
ture model of model transformations, we propose
a set of criteria to compare the expressive abil-
ity of transformation specification languages as
shown in Table 2. Based on the functional cov-
erage and the feature model of model transfor-
mations, we propose a set of criteria to compare
the expressive ability of transformation specifi-
cation languages as shown in Table 2: i) Source
and target constraints as explained in Section 4.1;
ii) Source-target relations: a support for describ-
ing the correspondence between source and tar-
get models; iii) Element actions, i.e., the actions
as explained in the definition of the meta-concept
TrafoRule in Section 4.1; iv) Bidirectional: a sup-
port for bidirectional transformations; v) Tracing:
a support for defining trace elements to main-
tain the correspondence between source and tar-
get models; vi) Rule organization: a support for
defining constraints on the order of rule appli-
cations; vii) Contract-based, i.e., offering means



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 19

Table 2. Compare the expressiveness of TC4MT with that of other specification languages

Features TC4MT
(2021)

Pamomo
(2011)

DSLTrans
(2014)

DelTa
(2014)

TL
(2020)

MTP
(2015)

Tract
(2012)

Source constraints x x x x x x x
Target constraints x x x x x x x
Source-target relations x x x x x x x
Element actions x x x x
Bidirectional x x x x x
Tracing x x x x
Rule organization x x x
Contract-based x x x x

for an on-flying verification. Current specifica-
tion languages often allow expressing constraints
on source models, target models, and relation-
ships between them using the contract-based ap-
proach [1–3, 5]. As explained in Section 3,
the TC4MT expresses not only behavioral con-
tracts but also protocol contracts for transforma-
tions. Therefore, TC4MT could allow us to spec-
ify the ordinal relationship between rules, simi-
larly to the proposals explained in DSLTrans [3]
and DelTa [4]. Besides, with a formal semantics
based on TGG, the TC4MT could maintain the
correspondence between source and target mod-
els by using trace elements. This also makes
it possible to specify bidirectional model trans-
formations and support the model transformation
debugging as discussed in [1, 5]. The TL lan-
guage also supports bidirectional transformation
specification, but unlike the other languages us-
ing tracing elements in graph transformation rules
to express bidirectional transformations, TL uses
OCL-based statements to express forward and
backward requirement separately.

7.2. Formal Definition
The formal definition of a language is ex-

tremely important, especially when the language
is handled automatically. There can be varying
degrees of formality, resulting in more or less ex-
tended possibilities for error detection, validation,
verification, and compilation. The most well-
known formal property of a programming lan-

guage or a specification language is that of having
a formally defined syntax, which defines the set of
allowed expressions. Formal semantics provides
a basis to formally define and verify properties
such as confluence, deterministic, the equivalence
of specifications, and correctness of implementa-
tion for a specification.

Accordingly, a specification language must
have a solid foundation based on widely accepted
mathematical theory, and the different parts of
the specification must be compatible with each
other. There should be a formally defined map-
ping between any element of the specification to
the mathematical domain that defines its seman-
tics. Specifically, a language specification should
have: a formally described syntax; a formally de-
fined interpretation model; and a formally defined
mapping between them.

Our specification language TC4MT has all
these three characteristics. The syntax of the
TC4MT language is formally defined based on
the syntax of attribute-typed graphs and the alge-
bra graph transformation technique using rewrite
graph rules. We also provide mappings between
the meta-modeling and graph typing techniques
and mappings between model transformations
and corresponding TGG transformations. Again,
the TC4MT specification language’s semantics
is formally defined based on triple graph gram-
mar that is widely used to specify and implement
graph transformation systems.



20 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Table 3. Compare the usability of TC4MT with that of other specification languages

Features TC4MT
(2021)

Pamomo
(2011)

DSLTrans
(2014)

DelTa
(2014)

TL
(2020)

MTP
(2015)

Tract
(2012)

Supporting MOF x x x x x x x
Textual syntax x x x x x x
Graphical syntax x x x x x
Pattern-based x x x x x x
Not own symbology x x x x

7.3. Usability

The specification language environment
should be oriented towards the use by humans.
So, specification languages should contain
appropriate notations for each stakeholder. A
transformation specification language should
represent requirements as a knowledge base for
other tasks in the development process such as
analysis, design, verification, and validation. Ta-
ble 3 describes the result of comparing TC4MT
with other implementation-independent specifi-
cation languages about usability. The notation x
in each cell indicates the corresponding feature
(listed by the first column) is provided by the
corresponding language (listed by the first row).

Current transformation specification lan-
guages often support the MOF standard, in which
requirements are represented by a structure like
the UML class diagram. However, specification
approaches regarded in [1, 3, 4] add more graphi-
cal symbols to represent patterns instead of using
pure UML class diagram structures like TC4MT
as well as [6]. Besides, current works often em-
ploy OCL to express constraints on models. The
works in [2, 5, 7] propose using expression pat-
terns in OCL to express requirements of a trans-
formation. TC4MT and several other specifica-
tion methods regarded in [1, 24, 35] employ graph
patterns in order to express requirements and sup-
port the translation of graph patterns into OCL ex-
pressions for different purposes, including imple-
mentation and verification of transformations.

8. Conclusion

This paper has introduced TC4MT as a high-
level transformation specification language and
provided a formal semantics for it. We explained
the use of the TC4MT specification to verify
transformations. Moreover, the TC4MT language
allows the designer to precisely specify require-
ments of a transformation as contracts at all three
levels: type contracts, behavioral contracts, and
protocol contracts. The TC4MT language is de-
fined based on graph patterns to visually represent
transformation contracts. The TGG-based formal
semantics of the TC4MT language provides an
efficient means for verifying the quality proper-
ties of model transformations.

In the context of MDE, “Every thing is a
model, even transformations” is a main engineer-
ing principle [14]. This poses the need to auto-
matically generate an implementation for a trans-
formation from a specification at a high level
like in TC4MT. In future work, we plan to real-
ize the goal by developing high-order transforma-
tions between the specification language TC4MT
and implementation languages.

Acknowledgements

This work has been supported by Vietnam
National University, Hanoi under Project No.
QG.20.54. We wish to thank the anonymous re-
viewers for numerous insightful feedback on the
first version of this paper.



N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22 21

References
[1] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige,

A Visual Specification Language for Model-to-Model
Transformations, in: Proc. Int. Symp. Visual Lan-
guages and Human-Centric Computing (VL/HCC),
IEEE Computer Society, 2010, pp. 119–126,
https://doi.org/10.1109/VLHCC.2010.25.

[2] K. Lano, S. Fang, S. K. Rahimi, TL: An Abstract
Specification Language for Bidirectional Transforma-
tions, in: Proc. 23rd Int. Conf. Model Driven Engineer-
ing Languages and Systems (MODELS), ACM, 2020,
pp. 77:1–77:10,
https://doi.org/10.1145/3417990.3419223.

[3] G. M. K. Selim, L. Lucio, J. R. Cordy, J. Dingel, B. J.
Oakes, Specification and Verification of Graph-Based
Model Transformation Properties, in: Proc. 7th Int.
Conf. Graph Transformation (ICGT), Springer, 2014,
pp. 113–129,
https://doi.org/10.1007/978-3-319-09108-2 8.

[4] H. Ergin, E. Syriani, Towards a Language for
Graph-Based Model Transformation Design Patterns,
in: Proc. 7th Int. Conf. Theory and Practice of
Model Transformations (ICMT), Vol. 8568 of LNCS,
Springer, 2014, pp. 91–105,
https://doi.org/10.1007/978-3-319-08789-4 7.

[5] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wim-
mer, L. Hamann, Formal Specification and Testing
of Model Transformations, in: Formal Methods for
Model-Driven Engineering - 12th International School
on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2012,
Vol. 7320 of LNCS, Springer, 2012, pp. 399–437,
https://doi.org/10.1007/978-3-642-30982-3 11.

[6] A. P. Magalhaes, A. M. S. Andrade, R. S. P. Ma-
ciel, On the Specification of Model Transformations
through a Platform Independent Approach, in: H. Xu
(Ed.), Proc. 27th Int. Conf. Software Engineering and
Knowledge Engineering (SEKE), KSI Research Inc.
and Knowledge Systems Institute Graduate School,
2015, pp. 558–561,
https://doi.org/10.18293/SEKE2015-053.

[7] E. Cariou, N. Belloir, F. Barbier, N. Djemam, OCL
Contracts for the Verification of Model Transforma-
tions, Electron. Commun. Eur. Assoc. Softw. Sci.
Technol., Vol. 24, 2009, pp. 1–15,
https://doi.org/10.14279/tuj.eceasst.24.326.

[8] M. Asztalos, L. Lengyel, T. Levendovszky, For-
mal Specification and Analysis of Functional Proper-
ties of Graph Rewriting-Based Model Transformation,
Softw. Test. Verification Reliab., Vol. 23, No. 5, 2013,
pp. 405–435,
https://doi.org/10.1002/stvr.1502.

[9] H. Ehrig, C. Ermel, U. Golas, F. Hermann, Graph and
Model Transformation - General Framework and Ap-

plications, Monographs in Theoretical Computer Sci-
ence. An EATCS Series, Springer, 2015,
https://doi.org/10.1007/978-3-662-47980-3.

[10] J. Greenyer, E. Kindler, Comparing Relational
Model Transformation Technologies: Implementing
Query/View/Transformation with Triple Graph Gram-
mars, Softw. Syst. Model., Vol. 9, No. 1, 2010,
pp. 21–46,
https://doi.org/10.1007/s10270-009-0121-8.

[11] A. Schürr, Specification of Graph Translators with
Triple Graph Grammars, in: Proc. 20th Int. Conf.
Graph-Theoretic Concepts in Computer Science
(WG), 1994, pp. 151–163,
https://doi.org/10.1007/3-540-59071-4 45.

[12] S. Sen, B. Baudry, J. Mottu, Automatic Model Gen-
eration Strategies for Model Transformation Test-
ing, in: Proc. 2nd Int. Cong. Theory and Prac-
tice of Model Transformations (ICMT@TOOLS),
Vol. 5563 of LNCS, Springer, 2009, pp. 148–164,
https://doi.org/10.1007/978-3-642-02408-5 11.

[13] W. Tang, Meta Object Facility, in: Encyclopedia of
Database Systems, Springer US, 2009, pp. 1722–1723,
https://doi.org/10.1007/978-0-387-39940-9 914.

[14] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven
Software Engineering in Practice, Second Edition,
Springer Cham, 2017,
https://doi.org/10.1007/978-3-031-02549-5.

[15] P. Giner, V. Pelechano, Test-Driven Development of
Model Transformations, in: Proc. 12th Int. Conf.
Model Driven Engineering Languages and Systems
(MODELS), Vol. 5795 of LNCS, Springer, 2009,
pp. 748–752,
https://doi.org/10.1007/978-3-642-04425-0 61.

[16] J. S. Cuadrado, Towards Interactive, Test-driven De-
velopment of Model Transformations, Journal of Ob-
ject Technology, Vol. 19, No. 3, 2020, pp. 3:1–12,
https://doi.org/10.5381/jot.2020.19.3.a18.

[17] J. A. Agirre, G. Sagardui, L. Etxeberria, Model
Transformation by Example Driven ATL Transfor-
mation Rules Development Using Model Differences,
in: A. Holzinger, J. Cardoso, J. Cordeiro, T. Li-
bourel, L. A. Maciaszek, M. van Sinderen (Eds.),
Proc. 9th Int. Conf. Software Technologies (ICSOFT),
Vol. 555 of CCIS, Springer, 2014, pp. 113–130,
https://doi.org/10.1007/978-3-319-25579-8 7.

[18] E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, O. M.
dos Santos, Engineering Model Transformations with
TransML, Softw. Syst. Model., Vol. 12, No. 3, 2013,
pp. 555–577,
https://doi.org/10.1007/s10270-011-0211-2.

[19] D. S. Kolovos, Establishing Correspondences be-
tween Models with the Epsilon Comparison Lan-
guage, in: Proc. 5th Int. Conf. Model Driven Archi-
tecture - Foundations and Applications (ECMDA-FA),



22 N.T. Hanh, D.H. Dang / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 39, No. 1 (2023) 1–22

Vol. 5562 of LNCS, Springer, 2009, pp. 146–157,
https://doi.org/10.1007/978-3-642-02674-4 11.

[20] B. Meyer, Applying ‘Design by Contract’, Computer,
Vol. 25, No. 10, 1992, pp. 40–51,
https://doi.org/10.1109/2.161279.

[21] A. Beugnard, J. Jézéquel, N. Plouzeau, Making Com-
ponents Contract Aware, Computer, Vol. 32, No. 7,
1999, pp. 38–45,
https://doi.org/10.1109/2.774917.

[22] N. Kahani, M. Bagherzadeh, J. R. Cordy, J. Dingel,
D. Varró, Survey and Classification of Model Trans-
formation Tools, Softw. Syst. Model., Vol. 18, No. 4,
2019, pp. 2361–2397,
https://doi.org/10.1007/s10270-018-0665-6.

[23] F. Fleurey, B. Baudry, P. Muller, Yves Le Traon, Qual-
ifying Input Test Data for Model Transformations,
Software and System Modeling, Vol. 8, No. 2, 2009,
pp. 185–203,
https://doi.org/10.1007/s10270-007-0074-8.

[24] C. A. González, J. Cabot, Test Data Generation
for Model Transformations Combining Partition and
Constraint Analysis, in: Proc. 7th Int. Cong. The-
ory and Practice of Model Transformations (ICMT),
Vol. 8568 of LNCS, Springer, 2014, pp. 25–41,
https://doi.org/10.1007/978-3-319-08789-4 3.

[25] L. Fritsche, J. Kosiol, A. Möller, A. Schürr,
G. Taentzer, A Precedence-Driven Approach for
Concurrent Model Synchronization Scenarios using
Triple Graph Grammars, in: Software Engineering
2022, Fachtagung des GI-Fachbereichs Softwaretech-
nik, Vol. P-320 of LNI, Gesellschaft für Informatik
e.V., 2022, pp. 27–28,
https://doi.org/10.18420/se2022-ws-005.

[26] O. Document, Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, 1st Edi-
tion, Object Management Group, 2016.

[27] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A
Model Transformation Tool, Sci. Comput. Program.,
Vol. 72, No. 1-2, 2008, pp. 31–39,
https://doi.org/10.1016/j.scico.2007.08.002.

[28] D.-H. Dang, M. Gogolla, An OCL-Based Framework

for Model Transformations, VNU Journal of Science:
Computer Science and Communication Engineering,
Vol. 32, No. 1, 2016, pp. 44–57,
https://doi.org/10.25073/2588-1086/jcsce.120.

[29] M. Gogolla, F. Büttner, M. Richters, USE: A uml-
based specification environment for validating UML
and OCL, Sci. Comput. Program., Vol. 69, No. 1-3,
2007, pp. 27–34,
https://doi.org/10.1016/j.scico.2007.01.013.

[30] F. Hilken, M. Gogolla, L. Burgueño, A. Vallecillo,
Testing Models and Model Transformations Using
Classifying Terms, Software and System Modeling,
Vol. 17, No. 3, 2018, pp. 885–912,
https://doi.org/10.1007/s10270-016-0568-3.

[31] R. V. D. Straeten, J. P. Puissant, T. Mens, Assessing
the Kodkod Model Finder for Resolving Model Incon-
sistencies, in: Proc. 7th Int. Cong. Modelling Founda-
tions and Applications (ECMFA), Vol. 6698 of LNCS,
Springer, 2011, pp. 69–84,
https://doi.org/10.1007/978-3-642-21470-7 6.

[32] J. Bruijning, Evaluation and Integration of Specifica-
tion Languages, Comput. Networks, Vol. 13, 1987,
pp. 75–89,
https://doi.org/10.1016/0169-7552(87)90092-4.

[33] S. Götz, M. Tichy, T. Kehrer, Dedicated Model Trans-
formation Languages vs. General-purpose Languages:
A Historical Perspective on ATL vs. Java, in: S. Ham-
moudi, L. F. Pires, E. Seidewitz, R. Soley (Eds.), Proc.
9th Int. Conf. Model-Driven Engineering and Software
Development (MODELSWARD), SciTePress, 2021,
pp. 122–135,
https://doi.org/10.5220/0010340801220135.

[34] K. Czarnecki, S. Helsen, Feature-Based Survey of
Model Transformation Approaches, IBM Syst. J.,
Vol. 45, No. 3, 2006, pp. 621–646,
https://doi.org/10.1147/sj.453.0621.

[35] J. Cabot, R. Clarisó, E. Guerra, J. de Lara, Verification
and Validation of Declarative Model-to-model Trans-
formations through Invariants, J. Syst. Softw., Vol. 83,
No. 2, 2010, pp. 283–302,
https://doi.org/10.1016/j.jss.2009.08.012.


