
VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Original Article

A Control Flow Graph Generation Method for Java Projects

Hoang-Viet Tran∗, Pham Ngoc Hung
VNU University of Engineering and Technology, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract: Many software quality assurance methods depend on the control flow graph (CFG) for the
analyzing process. However, existing methods for Java projects have not described details of the CFG
generation process, which is critical for having a fully automatic analysis method. This paper presents
a novel method, named CFG4J, for generating CFG associated with a given Java unit. The generated
CFG will be used in many other software quality assurance methods such as test data generation for
unit testing, unit debugging, code coverage computation, etc. We have implemented CFG4J in a tool
and performed some initial experiments with some common units with potential results. Finally, we
give some discussions about the experimental results at the end of the paper.

Keywords: Control flow graph, unit testing, test data generation, Java projects.

1. Introduction

Software quality assurance is one of the
most important tasks in software engineering
as many aspects of our modern lives depend
on software. There are many approaches to
addressing software quality assurance problems
such as software theorem proving [1–6],
model checking [7, 8], software testing [9],
etc. Each of these approaches uses different
inputs like software models [10–13], software
designs, or software source code [14, 15].
While those approaches based on software

∗ Corresponding author.
E-mail address: thv@vnu.edu.vn

https://doi.org/10.25073/2588-1086/vnucsce.668

models mostly depend on experts to create
the input models, the other approaches
based on software source code can be fully
automatic. The reason for this is that from the
project source code, we can extract software
architecture, models, software dependency
graphs, control flow graphs, data flow graphs
(DFGs), etc. which can be used as inputs for
those software quality assurance methods. Many
of these methods use control flow graphs as
inputs such as symbolic execution [16, 17],
software testing [14, 15, 18], program
debugging [19–21], etc.

18

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 19

Although there are many pieces of research
using control flow graphs as their inputs, to
our knowledge, there has not been any research
describing in detail (i.e., detailed algorithms
for practitioners to follow) how to build the
corresponding CFG for a Java unit (i.e., a
function in a Java class). In 2018, Zambon
and Rensink presented a method named recipes
for compositional construction of CFG for Java
6 [22]. The method is based on the concept
of recipes, which are essentially procedures
with atomic behavior. In turn, Those recipes
can recursively compose new recipes. However,
this method does not show how to build the
corresponding CFG for a given Java unit. In 2004,
Jang-Wu and Byeong-Mo presented a method
to construct CFG by separately computing the
normal and exception flows. Their paper has
two contributions. First, they show that we can
decouple normal flow and exception flow and
compute them separately by examining fourteen
Java programs. Second, they proposed an analysis
that estimates the exception control flow and
an exception flow graph that represents the
exception control flows. Then, they conclude that
we can construct a control flow by merging
an exception flow graph onto a normal flow
graph [23]. Nevertheless, the paper does not show
the details of how to construct the control flow
graph from a given Java unit. In 2016, Afshin et
al. presented an algorithm to extract flow graphs
from Java bytecode, including exceptional control
flows [24, 25]. This method does not generate
CFG from a given Java source code. There have
been many other papers such as the ones of
Zaretsky et al. [26] (which generates CFGs and
DFGs from assembly code) or Pedro et al. [27]
which extracts CFGs from Java bytecode) related
to CFG, but they do not mention how to build a
CFG from a given Java unit source code.

This paper presents a method, named CFG4J,
to generate the corresponding CFG for a given
Java unit. We can use the generated CFG as

input for other program analysis methods such
as test data generation, program debugging, etc.
The key idea of CFG4J is to use the abstract
syntax tree (AST) of the given Java unit generated
by using the Eclipse Java Development Tool1

(JDT) as input for the CFG generation process.
Then, for those statements of the given unit,
CFG4J divides them into three main types:
sequence statements, condition statements, and
loop statements. After that, CFG4J proceeds with
the construction of the corresponding CFG of the
given unit accordingly. The initial experimental
results with some common Java algorithms units
show that the time and memory usage of CFG4J
is acceptable when being used as input for other
program analysis methods.

The rest of the paper is organized as follows.
Section 2 shows the overview of the CFG4J,
which includes two phases: the generation of AST
and the generation process of CFG. This section
also presents the method of generating AST for
the given Java unit. From the resulting AST,
Section 3 shows details of the CFG generation
process. Preliminary experiments of CFG4J are
shown in Section 4. We discuss the related works
to CFG4J in Section 5. Finally, we conclude the
paper in Section 6.

2. CFG4J Overview

In this paper, we define the control flow
graph as follows.

Definition 1 (Control Follow Graph - CFG).
Given a Java unit, the corresponding CFG is
a directed graph G = (V, E), where V =

{v0, v1, .., vn} is a set of vertices and E =

{(vi, v j)|(vi, v j) ∈ V} is the set of its edges. V
represents all basic blocks of the unit while E is a
set of directed edges in which each edge (vi, v j)
represents the program state transition from
vi to v j.

1https://www.eclipse.org/jdt/

20 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Note 1. In this paper, we only consider units
whose statements are executed sequentially.

Note 2. During the CFG generation process
(i.e., from Algorithm Gen4Block to Algorithm
LinkSpecStmt), when we link two CFG
nodes Node1 and Node2 by using the Link,
setTrueNode, or setFalseNode procedures, we
actually create a directed edge from Node1 to
Node2. When we create a CFG node from a
given AST block or statement, we actually create
a CFG node in which the AST block or statement
becomes one of its properties (e.g., line 24 of
Algorithm Gen4Stmt).

Given a java unit u, CFG4J generates the
corresponding CFG for u via two main phases:
(i) Generate the AST (abstract syntax tree) for u
and (ii) Generate the corresponding CFG for u
from the resulting AST. The reason for choosing
AST as an input for the CFG generation process is
that AST contains all the information we need for
generating CFG. In addition, there are libraries
that support parsing the source code into AST.
This saves us a lot of effort in building the source
code parser from scratch. The overview of CFG4J
is shown in Figure 1.

Generate

AST

Generate

CFG

A Java

Unit u

CFG

AST

Figure 1. The overview of CFG4J.

• Phase i (Generate AST): From the given
Java unit u, CFG4J uses the Eclipse Java
Development Tools2 (JDT) to parse u and
generates the corresponding AST of u.
For this reason, CFG4J supports those
Java versions which are supported by JDT
libraries. The latest JDT version supports
Java version 5 and above.

2https://www.eclipse.org/jdt/

• Phase ii (Generate CFG): From the
generated AST of Phase i, CFG4J generates
the required CFG.

In Phase i, CFG4J generates AST for the
given Java unit. For ease of processing, CFG4J
employs the JDT libraries. Given a Java project
P, to test a specific unit u, we need to filter all
files of P, which are Java source files. Then, we
read each file as a text string and pass the string to
an ASTParser (a class in JDT library) instance as
the input. Listing 1 shows how a Java source text
string can be parsed to find the required function.

The function accepts a source string of
a Java file (sourceCodeFile) and the function
name (funcName) as its inputs. After parsing,
the function returns the AST node associated
with the given function name (funcName)
inside the source file. At the beginning of
the function parserToAstFuncList, the list of
ASTNode representing the corresponding list of
functions in the given source file (AstFuncList)
and an instance of ASTParser (parser) are
initiated as an empty list and a parser of the Java
version under consideration (line 3 and 4). Then,
the parser creates the AST for the source and
stores the result in a compilation unit cu (line 5-
7). The compilation unit cu is visited by using an
instance of ASTVisitor class (visitor) to retrieve
the list of units that are not constructors (line 8-
24). Finally, the list of AST nodes corresponding
to all functions in the given file is checked
to find the required function with the name of
funcName (line 26-32). If the function can be
found, the algorithm returns it. Otherwise, the
function returns null and stops.

After having the AST from Phase i, Phase
ii generates the corresponding CFG of the given
Java unit. Details of Phase ii will be shown in
Section 3.

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 21

Listing 1. Parse a Java source text string to find the AST of a Java unit

1 public static ASTNode parserToAstFuncList(String sourceCodeFile , String
funcName)

2 {
3 ArrayList <ASTNode > AstFuncList = new ArrayList <>();
4 ASTParser parser = ASTParser.newParser(AST.JLS8);
5 parser.setSource(sourceCodeFile.toCharArray ());
6 parser.setKind(ASTParser.K_COMPILATION_UNIT);
7 CompilationUnit cu = (CompilationUnit) parser.createAST(null);
8 ASTVisitor visitor = new ASTVisitor ()
9 {

10 @Override
11 public boolean visit(TypeDeclaration node)
12 {
13 List <MethodDeclaration > methods = Arrays.asList(node.

getMethods ());
14 for (MethodDeclaration method : methods) {
15 if (method.isConstructor () == false)
16 {
17 AstFuncList.add(method);
18 }
19 }
20

21 return true;
22 }
23 };
24 cu.accept(visitor);
25

26 for (int i = 0; i < AstFuncList.size(); i++)
27 {
28 if (((MethodDeclaration)AstFuncList.get(i)).getName ().

getIdentifier ().equals(funcName))
29 {
30 return AstFuncList.get(i);
31 }
32 }
33

34 return null;
35 }

3. Generate the Corresponding Control Flow
Graph for a Java Unit

Since this section presents many algorithms
with several names representing CFG classes
and utility functions, Tables 1 and 2 show these

classes and functions being used, respectively.
In addition, Figure 2 shows an overview of
the CFG generation process. In this figure, the
dash arrows from Algorithm Gen4ForStmt,
Gen4ForEachStmt, Gen4WhileStmt, and
Gen4DoStmt to Algorithm Gen4Block and

22 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Algorithm 1 & 2

For each statement

in the AST block

Algorithm 3

if

statement?
true

for

statement?

false

Algorithm 4
true

foreach

statement? Algorithm 5
true

false

while

statement? Algorithm 6
true

false

do

statement? Algorithm 7
true

false

false

Create

CfgNormalNode

last

statement?

A
lg

o
ri
th

m
 1

 &
 8

End

Start

false

true

Figure 2. The overview of CFG generation process.

LinkSpecStmt show that there is a call from
these algorithms to Algorithm Gen4Block and
Gen4SpecStmt.

3.1. Generate CFG for A Java Unit

In Java, each block is a snippet of source
code enclosed between two parentheses ‘{’ and

‘}’. For this reason, a unit function body is
a block. There are many other code snippets,
which are also called blocks. For example,
for this if statement if (a==‘c’){ return 0;}

else { int x = 10;}, there are two blocks
corresponding to the cases where the condition
a==‘c’ is true or false.

After having the AST node associated with
the given unit, we parse the node to get the
AST corresponding to the body of the unit,
which is an AST block. One block of AST can
contain many statements. In turn, each statement
can be a simple statement or contain many
child statements. For this reason, the process of
generating the CFG for a unit function is actually
the process of generating the corresponding CFG
for a block of statements.

The key idea of the process to generate CFG
from an AST block is as follows. As we know,
every statement or block always has a statement
before and another statement after it. CFG4J
generates the corresponding CFG of a given Java
block, which is connected to its CFG nodes
before and after it. Details of the process are
shown in Algorithm 1 (denoted by Gen4Block).

The algorithm accepts an AST block
(astBlock), the begin node (beginNode), the end
node (endNode), the list of continue statement
nodes (contNodeList), the list of break statement
nodes (breakNodeList), and the list of return
statement nodes (retNodeList) as its inputs.

At first, the algorithm gets the list of
statement AST nodes which are direct
children of astBlock and initializes the list
of contNodeList, breakNodeList, retNodeList
with the empty set (∅) (lines 2-3). Then, for each
statement (statement), the algorithm generates a
CFG node for it by calling Algorithm Gen4Stmt
(line 5). This job is responsible for generating
CFG corresponding to each case of a simple
statement, an if statement, a for statement,
etc. The job returns the beginning node of the
statement under consideration. In particular,

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 23

Table 1. CFG node class names

No. Name Description
1 CfgBeginForNode A class representing a block of AST of a f or statement
2 CfgBeginDoNode A class representing a block of AST of a do statement
3 CfgBeginForEachNode A class representing a block of AST of a f oreach statement
4 CfgContNode A class representing a block of AST of a continue statement
5 CfgBreakNode A class representing a block of AST of a break statement
6 CfgRetNode A class representing a block of AST of a return statement
7 CfgIfStmBlockNode A class representing a block of AST of a i f statement
8 getEndBlockNode A class representing a CFG node that ends a block of CFG
9 CfgForStmBlockNode A class representing a block of AST of a f or statement
10 CfgForEachStmBlockNode A class representing a block of AST of a f oreach statement
11 CfgWhileStmBlockNode A class representing a block of AST of a while statement
12 CfgDoStmBlockNode A class representing a block of AST of a do statement
13 CfgBoolExprNode A class representing a block of AST of a condition expression
14 CfgBlock A class representing a block of AST
15 CfgNormalNode A class representing a normal block of AST
16 CfgForEachExpressionNode A class representing a block of AST of a f oreach statement

Table 2. Utility function list

No. Name Description
1 get_statements Get the list of statements from a given AST block
2 create_a_new_CFG_node Create a new normal CFG node
3 getExpression Get the expression of an i f , f or, do, or while AST block
4 getThenStatement Get then expression of an i f AST block
5 getElseStatement Get else expression of an i f AST block
6 setTrueNode Set CFG node to the true case of a condition CFG node
7 setFalseNode Set CFG node to the f alse case of a condition CFG node
8 initializers Get the list of initializers of a given AST block
9 updaters Get the list of updater of a given AST block
10 getAfterNode Get the node right after a given CFG node
11 getParameter Get the parameters of a given AST block

12 setHasMoreNode
Set the CFG node following a given node in case there is more
node to process

13 setNoMoreNode
Set the CFG node following a given node in case there is no more
node to process

14 getBody Get the body block of a given AST block
15 Link Create a directed edge from one CFG node to another

24 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Algorithm 1: Generate CFG for an
AST block

Input: astBlock: the input AST block
beginNode: CFG node before the block
endNode: CFG node after the block
contNodeList: continue node list
breakNodeList: break node list
retNodeList: return node list
Output: beginBlockNode: beginning

node of the block
contNodeList: continue node list
breakNodeList: break node list
retNodeList: return node list

1 begin
2 statements←

get_statements(astBlock)
3 contNodeList, breakNodeList,

retNodeList ← ∅
4 foreach statement in statements do
5 currentNode← call Gen4Stmt(

statement, beginNode,
endNode);

6 if statement is the first statement
then

7 beginBlockNode←
currentNode

8 end
9 if currentNode is

CfgBoolExprNode or
currentNode is
CfgBeginForNode or
currentNode is CfgBeginDoNode
or currentNode is
CfgBeginForEachNode then

10 beginNode←
currentNode.getEndBlockNode();

11 else
12 beginNode← currentNode;
13 end
14 if currentNode is CfgContNode

then
15 Link(currentNode,

beginNode)
16 contNodeList ←

contNodeList ∪
{currentNode}

17 else if (currentNode is
CfgBreakNode) or (currentNode
is CfgRetNode) then

18 Link(currentNode, endNode)
19 breakNodeList ←

breakNodeList ∪
{currentNode}

20 end
21 end
22 end

it returns a CfgBoolExprNode node when
processing an if statement, a CfgBeginForNode
node when processing a for statement, etc.
There are four types of nodes corresponding
to compound statements as follows: (i)
CfgBoolExprNode is the beginning node of
if and while statements; (ii) CfgBeginForNode
is the beginning node of for statement; (iii)
CfgBeginDoNode is the beginning node of do
statement; and (iv) CfgBeginForEachNode is
the beginning node of enhanced for (for each)
statement. This is also responsible for connecting
the generated CFG with beginNode and endNode.

Later, the algorithm reassigns the beginNode
to the end of the current node to prepare to
generate CFG for the next statement (line 9-
13). The algorithm also checks if the current
node (currentNode) is either CfgContNode (a
node corresponding to a continue statement),
the algorithm links the current node with the
beginning node (beginNode). This is the case
of loop statements such as for, for each, while,
and do statements. Those loop statements will be
run from the beginning. Similar to the continue
statement, if the current node is CfgBreakNode
(a node corresponding to a break statement) or
CfgRetNode (a node corresponding to a return
statement), the algorithm links the current node
to the end node (endNode). In this algorithm,
getEndBlockNode method returns the end node of
the corresponding generated CFG of a compound
statement like if and for statements.

3.2. Generate CFG for One Statement

Given an AST node and the CFG nodes
before (beforeNode) and after (afterNode) the
current node, CFG4J generates the corresponding
CFG (currentNode) for it. Then, CFG4J connects
the generated CFG to beforeNode and afterNode.
Basically, this is an interim step where the CFG
creation process is redirected to either Algorithm
Gen4IfStmt, Gen4ForStmt, Gen4ForEachStmt,
Gen4WhileStmt, Gen4DoStmt for generating

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 25

CFG for if, for, for each, while, do
statements or to create a normal CFG
node for other simple statements. Details
of the process are shown in Algorithm 2
(denoted by Gen4Stmt). In this algorithm,
CfgIfStmBlockNode, CfgForStmBlockNode,
CfgForEachStmBlockNode,
CfgWhileStmBlockNode, CfgDoStmBlockNode,
and CfgNormalNode are classes representing
blocks of AST of if, for, foreach, while, do, and
other kinds of statements, respectively.

The algorithm checks the given statement
(stm) to see if it is in one of the following
cases using switch statement. In case stm is an
IfStatement AST node, the algorithm creates
an instance currentNode of CfgIfStmBlockNode
class by using the new keyword. Then, the
algorithm calls Algorithm Gen4IfStmt to
generate the CFG corresponding to stm. After
that, the algorithm returns the first node
(beginI f Node) of the generated CFG (lines 3-6).

In case stm is a ForStatement AST node,
the algorithm creates an instance currentNode of
CfgForStmBlockNode class. Then, the algorithm
calls Algorithm Gen4ForStmt to generate the
CFG corresponding to the for statement stm.
After that, the algorithm returns the first node
(beginForNode) of the generated CFG (lines 7-
10).

In case stm is a EnhancedForStatement
AST node, the algorithm creates an instance
currentNode of CfgForEachStmBlockNode
class. Then, the algorithm calls Algorithm
Gen4ForEachStmt to generate the CFG
corresponding to the for each statement stm.
After that, the algorithm returns the first node
(beginForEachNode) of the generated CFG
(lines 11-14).

In case stm is a WhileStatement AST node,
the algorithm creates an instance currentNode
of CfgWhileStmBlockNode class. Then, the
algorithm calls Algorithm Gen4WhileStmt to
generate the CFG corresponding to the for each

Algorithm 2: Generate the
corresponding CFG for one statement

Input: stm: the AST node under consideration;
be f oreNode, a f terNode: CFG nodes before &
after the block; contNodeList, breakNodeList,
retNodeList: continue, break, return node lists
Output: First node CFG if stm is a complex

statement
or CFG node if stm is a simple statement;
contNodeList, breakNodeList, retNodeList:
continue, break, return node lists

1 begin
2 switch stm do
3 case IfStatement
4 currentNode← new

CfgIfStmBlockNode(stm)
5 beginI f Node← call Algorithm

Gen4IfStmt(currentNode,
be f oreNode, a f terNode,
contNodeList, breakNodeList,
returnNodeList);

6 return beginI f Node
7 case ForStatement
8 currentNode← new

CfgForStmBlockNode(stm)
9 beginForNode← call Algorithm

Gen4ForStmt(currentNode,
be f oreNode, a f terNode,
returnNodeList);

10 return beginForNode
11 case EnhancedForStatement
12 currentNode← new

CfgForEachStmBlockNode(stm)
13 beginForEachNode← call

Algorithm
Gen4ForEachStmt(currentNode,
be f oreNode, a f terNode,
returnNodeList);

14 return beginForEachNode
15 case WhileStatement
16 currentNode← new

CfgWhileStmBlockNode(stm)
17 beginWhileNode← call Algorithm

Gen4WhileStmt(currentNode,
be f oreNode, a f terNode,
returnNodeList);

18 return beginWhileNode
19 case DoStatement
20 currentNode← new

CfgDoStmBlockNode(stm)
21 beginDoNode← call Algorithm

Gen4DoStmt(currentNode,
be f oreNode, a f terNode,
returnNodeList);

22 return beginDoNode
23 otherwise do
24 currentNode← new

CfgNormalNode(stm);
25 end
26 end
27 return currentNode
28 end

26 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

statement stm. After that, the algorithm returns
the first node (beginWhileNode) of the generated
CFG (lines 15-18).

In case stm is a DoStatement AST node,
the algorithm creates an instance currentNode of
CfgDoStmBlockNode class. Then, the algorithm
calls Algorithm Gen4DoStmt to generate the
CFG corresponding to the for each statement stm.
After that, the algorithm returns the first node
(beginDoNode) of the generated CFG (lines 19-
22).

In case stm is other types of statements, the
algorithm creates a new CFG node corresponding
to the AST statement (stm) (line 24) and returns
this instance (line 27).

3.3. Generate CFG for if Statement

Given an AST node corresponding to an
if statement, CFG4J generates the CFG for it.
Details of the process are shown in Algorithm 3
(denoted by Gen4IfStmt). The algorithm is
also responsible for connecting the generated
CFG with the nodes before and after it. In
this algorithm, CfgBoolExprNode is a class
representing a boolean expression that has two
possible values of true and false. This class has
two methods setTrueNode and setFalseNode to
set the two nodes (true node and false node)
corresponding to true and false cases.

The algorithm starts by retrieving the
AST corresponding to the condition expression
(condAS T) and creates a CFG node for it
(condNode) (line 2-3). Then, the algorithm links
condNode with be f oreNode (line 4). After
that, the algorithm gets the AST node of then
block, generates the corresponding CFG for it
by calling Algorithm Gen4Block, and assigns
its first node (thenNode) to the true node of
condNode (lines 6). Later, the algorithm checks
if the AST node of else block exists. If yes,
it generates the corresponding CFG for it by
calling Algorithm Gen4Block and assigns its first
node (elseNode) to the false node of condNode

Algorithm 3: Generate the
corresponding CFG for if statement

Input: i f Ast: an AST node representing
an if statement

be f oreNode: CFG node before the
statement
a f terNode: CFG node after the
statement
contNodeList: continue node list
breakNodeList: break node list
retNodeList: return node list
Output:
The first node of the generated CFG
contNodeList: continue node list
breakNodeList: break node list
retNodeList: return node list

1 begin
2 condAS T ← i f Ast.getExpression()
3 condNode← new

CfgBoolExprNode(condAS T)
4 Link (condNode, be f oreNode)
5 thenAS T ←

i f Ast.getThenStatement()
6 thenNode← call Algorithm

Gen4Block(thenAS T , condNode,
a f terNode, contNodeList,
breakNodeList, returnNodeList)
condNode.setTrueNode(thenNode)

7 if elseAS T is not null then
8 elseAS T ←

i f Ast.getElseStatement()
9 elseNode← call Algorithm

Gen4Block(elseAS T ,
condNode, a f terNode,
contNodeList, breakNodeList,
returnNodeList)

10 condNode.setFalseNode(elseNode)
11 else
12 condNode.setFalseNode(a f terNode)

13 end
14 return condNode
15 end

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 27

(lines 7-10). If the AST node of else block does
not exist, the algorithm assigns a f terNode into
the false node of condNode (line 12). Finally,
the algorithm returns condNode as the first node
of the CFG corresponding to if statement under
consideration (line 14).

3.4. Generate CFG for for Statement

In Java language, for statement is used
to loop a certain block of statements through
a list of items using one counting variable.
Particularly, for statement refers to this kind
of statement: for (i = 0; i < 10; i++){//Do

something}. In this for statement, there are four
parts: initializers (i = 0), condition expression
(i < 10), updaters (i++), and body (//Do
something). In which, initializers and updaters
are lists of sub-statements. The process of parsing
the for AST node into the corresponding CFG
follows the Java for statement execution order.
Details of the process are shown in Algorithm 4
(denoted by Gen4ForStmt).

Algorithm Gen4ForStmt accepts the AST
node (f orAst) corresponding to the for statement
under consideration, the CFG nodes before and
after the for statement, and the return node list
as its inputs. The algorithm starts by processing
the list of initializers (line 3-7). Each initializer
will be parsed as one CFG node. Then, they
are connected to each other. The algorithm uses
a temporary node tempBeforeNode (line 2) to
connect one current initializer node to its before
node. This is also used to connect the first
initializer node to beforeNode.

Later, the condition node is created and
linked to the last node of the initializers (lines 8-
10). After that, the body block node and
updater nodes are created (lines 11-22). Like
the initializer nodes, updater nodes are created
and linked to each others using a temporary
node (named tempNode) and another temporary
node (firstUpdaterNode) for keeping track of the
first updater node. The algorithm links the end

Algorithm 4: Generate the
corresponding CFG for for statement

Input: f orAst: the for AST node
be f oreNode: CFG node before the block
a f terNode: CFG node after the block
retNodeList: return node list
Output: the first node of f or CFG

1 begin
2 tempBe f oreNode← be f oreNode
3 foreach init in f orAst.initializers() do
4 normalNode← new

CfgNormalNode(init)
5 Link(tempBe f oreNode,

normalNode, a f terNode)
6 tempBe f oreNode← normalNode
7 end
8 condAS T ← f orAst.getExpression()
9 condNode← new

CfgBoolExprNode(condAS T)
10 LinkCurrentNode(tempBe f oreNode,

condNode, a f terNode)
11 bodyAst ← f orAst.getBody()
12 bodyBlockNode← new

CfgBlock(bodyAst)
13 tempNode← bodyBlockNode
14 f irstU pdaterNode← null
15 foreach upd in f orAst.updaters() do
16 normalNode← new

CfgNormalNode(upd)
17 Link(tempNode, normalNode,

a f terNode)
18 tempNode← normalNode
19 if upd is the first updater then
20 f irstU pdaterNode←

normalNode
21 end
22 end
23 Link (tempNode, condNode)
24 bodyNode← call Algorithm

Gen4Block(bodyAst, condNode,
f irstU pdaterNode, contNodeList,
breakNodeList, returnNodeList);

25 call Algorithm
LinkSpecStmt(contNodeList,
breakNodeList, returnNodeList)
condNode.setTrueNode(bodyNode)

26 condNode.setFalseNode(a f terNode)
27 return be f oreNode.getAfterNode()
28 end

28 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

updater node (tempNode) with the condition node
(condNode).

The body CFG is built from the body block
node by calling Algorithm Gen4Block (line 24).
Algorithm Gen4Block is also responsible for
linking the first node and end node of the
body CFG to the condition node and the first
updater node. Then, the algorithm links all nodes
corresponding to continue, break, and return
statements to either beforeNode or afterNode
of the for statement by calling Algorithm
LinkSpecStmt (line 25). Finally, the first and
last nodes of the body CFG (afterNode) are
set to true and false nodes of the condition
node, respectively (lines 25-26). The algorithm
returns the first node of the CFG corresponding
to for statement (i.e., the node after beforeNode)
(line 27).

3.5. Generate CFG for foreach Statement

Let us continue building CFG for the foreach
statement. In Java, foreach statement is also used
to loop a certain process through a list of items
using one running variable. Particularly, foreach
statement is the following kind of statement: for
(Type str: list){//Do something}. In which,
str (called parameter) is a running variable that
gets each value from the list (list) for every loop.
Next, list (called expression) is an expression
that returns a list of values. Last, Do something
(called body) is a block of statements to execute
for each value in the list. CFG4J builds CFG
for foreach statement according to its execution
order. Details of the process are presented in
Algorithm 5 (denoted by Gen4ForEachStmt).

The algorithm accepts an
EnhancedForStatement AST node, the CFG
nodes before and after the current node, and
the return node list as its inputs. The algorithm
starts by getting the AST of the expression and
parameter of f eAst to create the corresponding
expression node and link it to be f oreNode
(lines 2-5). Then, the algorithm gets the body

Algorithm 5: Generate the
corresponding CFG for foreach
statement

Input: f eAst: The AST node under
consideration

be f oreNode: CFG node right before the
block
a f terNode: CFG node right after the
block
retNodeList: return node list
Output: The first node of f oreach CFG

1 begin
2 exprAS T ← f eAst.getExpression()
3 paramAS T ← f eAst.getParameter()
4 exprNode← new

CfgForEachExpressionNode(exprAS T ,
paramAS T)

5 Link (be f oreNode, exprNode)
6 bodyBlock ← f eAst.getBody();
7 bodyBlockNode← new

CfgBlock(bodyBlock);
8 bodyNode← call Algorithm

Gen4Block(bodyBlockNode,
exprNode, exprNode,
contNodeList, breakNodeList,
returnNodeList)

9 call Algorithm
LinkSpecStmt(contNodeList,
breakNodeList, returnNodeList)

10 exprNode.setHasMoreNode(bodyNode)
11 exprNode.setNoMoreNode(a f terNode)
12 return exprNode
13 end

block of statements, creates the corresponding
body CFG, and links it with exprNode (lines 6-8).
In this step, the first and last nodes of the body
CFG are also linked to the expression node
(exprNode) according to how foreach statement
works. Then, the algorithm links all nodes
corresponding to continue, break, and return
statements to either beforeNode or afterNode

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 29

of the for statement (line 9). In this algorithm,
exprNode has two special nodes to specify its
successor nodes in cases where there is more
node(s) or no more node, respectively. The
algorithm sets the first node of the body CFG
(bodyNode) and afterNode to the two successor
nodes of exprNode, respectively (lines 10-11).
Finally, the algorithm returns exprNode as the
first node of the foreach CFG (line 12).

3.6. Generate CFG for while Statement

In Java, while statement is used to loop a
certain block of statements with an unknown
number of iterations. Following is one example
of a while statement: while (i < 10){//Do

something}. In which, i < 10 is called the
condition expression and //Do something is
called the body of the while statement. CFG4J
also builds the CFG for the while statement
by following its execution order. Details of the
process are shown in Algorithm 6 (denoted by
Gen4WhileStmt).

The algorithm accepts the corresponding
AST block of the while statement, the CFG nodes
before and after the current node, and the return
node list as its inputs. At first, the algorithm
gets the condition expression AST, creates a CFG
node for it, and links it with the node before
(beforeNode) (lines 2-4). After that, the AST
corresponding to the body block is retrieved,
the body CFG is built by calling Algorithm
Gen4Block (lines 5-6). This step is responsible
for connecting the newly built CFG to its before
and after nodes (both nodes are condNode). Later,
the algorithm links all nodes corresponding to
continue, break, and return statements to either
beforeNode or afterNode of the for statement
(line 7). Then, the algorithm sets bodyNode and
afterNode to true and false nodes of condNode,
respectively (lines 8-9). Finally, the algorithm
returns condNode (line 10.

Algorithm 6: Generate the
corresponding CFG for while statement

Input: whileAst: the AST node under
consideration

be f oreNode: CFG node right before the
block
a f terNode: CFG node right after the
block
retNodeList: return node list
Output: the first node of the while CFG

1 begin
2 condAS T ←

whileAst.getExpression()
3 condNode← new

CfgBoolExprNode(condAS T)
4 Link (be f oreNode, condNode)
5 bodyBlock ← whileAst.getBody()
6 bodyNode← call Algorithm

Gen4Block(bodyBlock, condNode,
condNode, contNodeList,
breakNodeList, returnNodeList)

7 call Algorithm
LinkSpecStmt(contNodeList,
breakNodeList, returnNodeList)

8 condNode.setTrueNode(bodyNode)
9 condNode.setFalseNode(a f terNode)

10 return condNode
11 end

3.7. Generate CFG for do Statement

Let us consider do statement. This is used
to loop a certain block of statements until
a predefined condition is no longer correct.
Particularly, do statement refers to the following
kind of statement: do{//Do something} while

(i < 10). In this statement, //Do something

is the block of statements we want to
loop through, and i < 10 is the condition
expression. If this condition expression is true,
the block //Do something will be executed.

30 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

CFG4J constructs the corresponding CFG of do
statement according to its execution order. The
CFG construction process details are shown in
Algorithm 7 (denoted by Gen4DoStmt).

Algorithm 7: Generate the
corresponding CFG for do statement

Input: doAst: the AST node under
consideration

be f oreNode: CFG node right before the
block
a f terNode: CFG node right after the
block
retNodeList: return node list
Output: the first node of do CFG

1 begin
2 condAS T ← doAst.getExpression()
3 condNode← new

CfgBoolExprNode(condAS T)
4 bodyAst ← doAst.getBody()
5 bodyNode← call Algorithm

Gen4Block(bodyAst, be f oreNode,
condNode, contNodeList,
breakNodeList, returnNodeList)

6 call Algorithm
LinkSpecStmt(contNodeList,
breakNodeList, returnNodeList)

7 condNode.setTrueNode(bodyNode)
8 condNode.setFalseNode(a f terNode)
9 return bodyNode

10 end

The algorithm accepts the AST block of do
statement, the CFG nodes before and after the
current node as its inputs. First, the algorithm
gets the condition expression AST and creates the
CFG node corresponding to it (lines 2-3). Then,
the algorithm gets the body AST, creates the
corresponding CFG for it by calling Algorithm
Gen4Block. This step is responsible for creating
the connection between the newly created CFG
with be f oreNode and condNode, respectively

(lines 4-5). Then, the algorithm links all nodes
corresponding to continue, break, and return
statements to either beforeNode or afterNode of
the for statement (line 6). Later, the algorithm sets
bodyNode and a f terNode to true and false nodes
of condNode, respectively (lines 7-8). Finally, the
algorithm returns bodyNode as the first node of
the generated CFG corresponding to do statement
(line 9).

3.8. Link continue, break, and return Statements

In Java projects, there are three special
statements that affect the generated CFG:
continue, break, and return. When reaching these
statements, the control flow needs to break out
of the current loop, continue another loop from
the beginning, or go to the end of the unit under
test. Algorithm LinkSpecStmt shows details of
the linking process between these statements to
either the beginning node or the ending node
of a certain block. The process of generating
CFG for loop statements such as for, foreach,
while, do, will be responsible for parsing the
correct beforeNode and afterNode to Algorithm 8
(denoted by LinkSpecStmt).

Algorithm LinkSpecStmt accepts the node
right before the block (beforeNode), the node
right after the block (afterNode), a list of
continue statement nodes (contNodeList), a list
of break statement nodes (breakNodeList), and
a list of return statement nodes retNodeList
as its inputs. At the start, the algorithm
connects all nodes corresponding to continue
statements to the beforeNode (lines 2-4). For
those nodes corresponding to break statements,
the algorithm connects them to the end node
of the block (afterNode) (lines 5-7). Finally, the
algorithm connects all nodes corresponding to
return statements to the end node of the block
(lines 8-10).

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 31

Algorithm 8: Link continue, break, and
return statements

Input: be f oreNode: CFG node right
before the block

a f terNode: CFG node right after the
block
contNodeList: continue node list
breakNodeList: break node list
retNodeList: return node list

1 begin
2 foreach contNode in contNodeList

do
3 Link (contNode, be f oreNode)
4 end
5 foreach breakNode in

breakNodeList do
6 Link (breakNode, a f terNode)
7 end
8 foreach retNode in retNodeList do
9 Link (retNode, a f terNode)

10 end
11 end

3.9. Complexity

As we can see, the process of generating
the CFG from an AST block corresponding
to a Java unit is a recursive process (i.e.,
calling the Algorithm Gen4Block recursively).
This process depends on the number of direct
children statements of the block. Let m be the
maximum number of direct children statements
of all blocks being processed and n be the number
of recursive calls. The time complexity of the
whole CFG generation process is O(m ∗ n).

3.10. An Example

Let’s consider an example of the CFG
generation process for getAverage function
shown in Listing 2. The CFG generation process
is shown in Table 3. In this table, for a short

(a) (b) (c)

S1
Begin

End

Begin

End

Begin

End

S1

S2

Figure 3. The CFG being created.

description of a block (i.e., the source code
from a curly brace opening character ‘{’ to the
corresponding line with the curly brace closing
character ‘}’), we describe it from the line with
‘{’ to the line with ‘}’. In addition, we named the
statements in a certain block from S 1 to S n, where
n is the number of statements in that block. For
reading convenience, a condition expression, an
initializer of a f or statement, and an updater of
a f or statement are named with ‘C’, ‘I’, and ‘U’,
respectively. Results are shown in Figure 3 and 4.

Listing 2. The getAverage function

1 float getAverage(int arr[],int n){
2 float avg = 0;
3 int temp = 0;
4 if (n > 0){
5 for(int i=0; i<n; i++){
6 temp += arr[i];
7 }
8 avg = temp / n;
9 }

10 return avg;
11 }

4. Experiments

4.1. Experimental results

To evaluate CFG4J, we have implemented
the method in Java language in a tool named

32 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Table 3. An example of the CFG generation process

Running
algorithm

Processing
statement Result

Before start

beginNode = Begin,
endNode = End,
astBlock = B1,
other lists are ∅

The current CFG is shown in Figure 3.a

1st call of
Algorithm Gen4Block

B1 = Block line 1 to 11 Call Algorithm Gen4Stmt

Algorithm Gen4Stmt S1 = “float avg = 0;”
+ CFG node S1 of CfgNormalNode is created
+ The current CFG is shown in Figure 3.b

Algorithm Gen4Stmt S2 = “int temp = 0;”
+ CFG node S2 of CfgNormalNode is created
+ The current CFG is shown in Figure 3.c

Algorithm Gen4Stmt
S3 = if statement
from line 4 to 9

Call Algorithm Gen4IfStmt

Algorithm Gen4IfStmt
if statement from
line 4 to 9

+ CFG node S3.C of CfgBoolExprNode is created
+ 2nd call of Algorithm Gen4Block
+ The current CFG is shown in Figure 4.a

2nd call of
Algorithm Gen4Block

S3.T = Block line 4 to 9 Call Algorithm Gen4ForStmt

Algorithm Gen4ForStmt
S3.T.S1 = for statement
from line 5 to 7

+ CFG nodes S3.T.S1.I of CfgNormalNode is created
+ CFG node S3.T.S1.C of CfgBoolExprNode is created
+ CFG node S3.T.S1.U of CfgNormalNode is created
+ 3rd call of Algorithm Gen4Block
+ The current CFG is shown in Figure 4.b

3rd call of
Algorithm Gen4Block

S3.T.S1.B = Block
line 5 to 7

Call Algorithm Gen4Stmt

Algorithm Gen4Stmt
S3.T.S1.B.S1 =
“temp += arr[i];”

+ CFG node S3.T.S1.B.S1 of CfgNormalNode is created
+ Return to 3rd call of Algorithm Gen4Block
+ The current CFG is shown in Figure 4.c

3rd call of
Algorithm Gen4Block

+ Return to 2rd call of Algorithm Gen4Block

2rd call of
Algorithm Gen4Block

S3.T.S2 =
“avg = temp / n;”

+ CFG node S3.T.S2 of CfgNormalNode is created
+ Return to 1rd call of Algorithm Gen4Block
+ The current CFG is shown in Figure 4.d

1st call of
Algorithm Gen4Block

S4 = “return avg ;”
+ CFG node S4 of CfgNormalNode is created
+ The current CFG is shown in Figure 4.e
+ Return and stop

CFG4J Tool and done some assessments about
its applicability and effectiveness. The source
code of the tool is published at https:

//github.com/vnuvietth/CFG4J_paper. We
focus on the key factors of the CFG building
process, which are the required time and memory

https://github.com/vnuvietth/CFG4J_paper
https://github.com/vnuvietth/CFG4J_paper

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 33

(a)

Begin

End

S1

S2

S3.C

trueNode

S3.T

false

Node

S3.T.S1.I

Begin

S1

S2

S3.T.S1.B.S1

S3.T.S1.U

S3.C

trueNode

S3.T.S1.C

trueNode

End

false

Node

(d)

S3.T.S2

S3.T.S1.I

Begin

S1

S2

S3.T.S1.B.S1

S3.T.S1.U

S3.C

trueNode

S3.T.S1.C

trueNode

End

false

Node

(c)(b)

S3.T.S1.I

Begin

S1

S2

S3.T.S1.B

S3.T.S1.U

S3.C

trueNode

S3.T.S1.C

trueNode

End

false

Node

falseNode falseNode

falseNode

S3.T.S1.I

Begin

S1

S2

S3.T.S1.B.S1

S3.T.S1.U

S3.C

trueNode

S3.T.S1.C

trueNode

End

false

Node

(e)

S3.T.S2

falseNode

S4

Figure 4. The CFG being created (cont.).

usage. The experiments are performed on a
machine that has the following configuration:
Processor: Intel(R) Core(TM) i5-5200U CPU
@ 2.20GHz, 2201 Mhz, 2 Core(s), 4 Logical
Processor(s); RAM: 8GB; Operating system:
Microsoft Windows 10 Home. We have used
some units from a repository named The
Algorithms - Java3 and the website https://
www.geeksforgeeks.org for testing. The test
units are as follows:

• LinearSearch: Retrieved from The
Algorithms - Java. Given an array of n
elements, the function is to search a given
element x in the array using linear search.

• LeapYear: Retrieved from https://www.
geeksforgeeks.org. The function is to
check if a year. As we know, a year is a leap

3https://github.com/TheAlgorithms/Java

year if the following conditions are satisfied:
(i) The year is a multiple of 400, and (ii) The
year is a multiple of 4 and not a multiple of
100.

• FibonacciSearch: Retrieved from The
Algorithms - Java. Given an array of n
elements, the function is to search a given
element x in the array using a Fibonacci
search.

• JumpSearch: Retrieved from The
Algorithms - Java. Given an array of n
elements, the function is to search a given
element x in the array using a jump search.

• SelectionSort: Retrieved from The
Algorithms - Java. Given an array of n
elements, the function is to sort values in
the array using the selection sort.

• BubbleSort: Retrieved from The Algorithms

https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org

34 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

- Java. Given an array of n elements, the
function is to sort values in the array using
bubble sort.

• SimpleSort: Retrieved from The Algorithms
- Java. Given an array of n elements, the
function is to sort values in the array using
the simple sort.

• Average: Retrieved from The Algorithms -
Java. Given an array of n elements, the
function is to calculate the average of all
values in the array.

• BinaryPower: Retrieved from The
Algorithms - Java. Given two numbers
a and p, the function is to calculate the
power ap using the binary operator.

To remove the overhead dependencies when
performing the experiments, we have done
experiments for each testing function ten times
and recorded the result. Experimental results are
shown in Table 4. In Table 4, the columns are as
follows.

• “No.”: the ordinal number of the testing
function in our experiments.

• “Function name”: the function name of the
testing function in our experiments.

• “Time (ms)”: the required time (in
milliseconds) to generate CFG for the
corresponding function.

• “Memory (MB)”: the required memory
(in Megabytes) to generate CFg for the
corresponding function.

4.2. Discussions

From the experimental results shown in
Table 4, we have the following observations.

• The CFG generation for all functions
requires less than 100ms. This is an

Table 4. Experimental results

No. Function name Time
(ms)

Memory
(MB)

1 LinearSearch 38.0 8.51
2 LeapYear 26.0 9.11
3 FibonacciSearch 31.0 8.94
4 JumpSearch 33.0 8.06
5 SelectionSort 21.0 7.18
6 BubbleSort 40.0 7.69
7 SimpleSort 22.0 8.85
8 Average 34.0 9.46
9 BinaryPower 29.0 9.09

acceptable amount of time as a pre-
processing time in addition to the time
required by other kinds of methods such as
test data generation, code coverage analysis,
code highlight, etc. which accepts CFG as
an input. The required amount of time when
generating CFG for testing functions is not
much different from each other.

• The memory usage when generating CFG
for those testing functions is quite small
and not much different from each other.
This implies the memory usage efficiency
of CFG4J when generating CFG. This is a
good start when implementing other analysis
methods, which use CFG.

• The memory and time usages are not the
same for all functions under test as shown
in Table 4 as those results depend on the
overhead and computer status when testing.

From the time and memory usage, we can
see that CFG4J is applicable in combination with
other analysis methods or test data generation for
real-world projects.

4.3. Threats to Validity

As described in the above sections, there
are some threats that can affect the validity of

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 35

CFG4J. First, CFG4J can only work with units
whose statements are executed sequentially. This
does not affect the applicability of CFG4J as
we are building CFG for Java units. Those units
are supposed to be called in other components
of a project. For this reason, each unit can
be considered as one complex statement and is
executed once as a whole. However, currently,
CFG4J has not supported those statements which
invoke the concurrent process in Java. To do
this, first, we need a formal definition of how
concurrent processes can be presented using
CFG. Then, we can refine CFG4J to make it
support those statements. However, this is not in
the scope of this paper.

Second, CFG4J depends on the JDT libraries
to parse a given source code to generate the
required AST. However, JDT libraries support
Java version 5 to the latest version. As a result,
almost all Java projects are supported by CFG4J
except those statements mentioned in the first and
fourth points). This will not be an obstacle to
preventing CFG4J from being applied to projects
in practice.

Third, regarding the soundness of CFG4J, we
see that Java is an object-oriented programming
language supporting structural programming.
That is Java supports the three main types of
statements sequence, condition, and loop. From
a given AST, we can retrieve all the necessary
information. For this reason, CFG4J is sound.
The given AST may not contain all information
for other purposes. However, for the generation
of CFG, AST has all the necessary information.

Forth, in this version of the method,
we have presented the process for generating
CFG corresponding to common statements like
simple statements (i.e., declaration statements,
assignment statements, etc.), branch statements
(i.e., if statements), and loop statements (i.e.,
for, foreach, while, do/while statements).
There are many special statements in Java that
have not been addressed in this paper such as

switch, lambda expression, anonymous class,
object method call, etc. However, we think that
the method can be extended to generate CFG
for these statements. The reason is that CFG
is actually the visualization of the statement
execution flow.

Last but not least, the version of Java source
code under testing can affect the validity of
the CFG4J method. If the JDT libraries cannot
parse the given Java source code to generate the
required AST, the CFG4J cannot work. However,
once the JDT libraries can generate the required
AST, CFG4J can generate the required CFG.

5. Related Works

In 2018, Zambon and Rensink proposed
a method named recipes for compositional
construction of CFG for Java 6 [22]. The idea
of this method is based on the concept of
recipes, which are essentially procedures with
atomic behavior. In turn, those recipes can
recursively compose new recipes. Although the
idea of recipes is good for constructing CFG
for Java, there are still some limitations. First,
it is based on the self-constructed component
called graph compiler to produce the AST for
the Java program under analysis. This limits the
tool to be applied only to Java 6. To apply to a
higher version of Java, this component must be
upgraded. Second, although the program ASTs
generated by the graph compiler conform to the
Java AST type-graph, the key idea of recipes
when constructing CFG is to add flow edges
between AST nodes.

Sharing the same interest as Zambon
and Rensik about building CFG for Java
programming language, we focus on building
CFG for units only. There are four main
differences between CFG4J and recipes as
follows. First, CFG4J focuses on building CFG
for Java units, not for the whole Java program
as recipes. The generated CFG will be used as

36 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

inputs for other analysis methods such as test
data generation, code coverage calculation, etc.
Second, CFG4J is based on the recursive idea
when parsing Java code blocks, which are code
snippets surrounded by the two parentheses of
‘{’ and ‘}’, as the main elements of the method.
Third, CFG4J makes use of parsers of the Eclipse
Java development tools (JDT) to parse the given
Java unit into AST blocks. By using these
parsers, we have the latest supported Java version
whenever these parsers support. We argue that we
should reuse the available parsers to save effort
and have the best support rather than rebuilding a
new parser to support all versions of Java. This is
especially true when a new Java version emerges,
all parsers need to be upgraded. Finally, CFG4J
builds CFG for units based on Java blocks of
AST corresponding to the unit source code by
parsing through them instead of adding flow
edges between AST nodes as in recipes.

In 2004, Jang-Wu and Byeong-Mo proposed
a method to construct CFG by computing the
normal and exception flows separately. Their
paper has two contributions. First, they show that
normal flow and exception flow can be safely
decoupled and hence computed separately by
examining fourteen Java programs. Second, they
proposed an analysis that estimates the exception
control flow and an exception flow graph that
represents the exception control flows. They show
that a control flow graph can be constructed
by merging an exception flow graph onto a
normal flow graph [23].However, the paper does
not show the details of how to construct the
control flow graph from a given Java source code.
We argue that the method does not provide a
general method for constructing CFG for Java
programs. Sharing the same interest as Jang-
Wu and Byeong-Mo in constructing CFG for
Java programs, we focus on providing a detailed
method to construct CFG for Java units. CFG4J
builds CFGs for units by using a recursive
method and for Java’s three main types of control

statements, which are sequence, branch, and loop
statements.

In 2016, Afshin et al. proposed an algorithm
to extract flow graphs from Java bytecode,
including exceptional control flows [24, 25]. This
method is fundamentally different from CFG4J
that this method is based on Java bytecode
analysis while CFG4J uses Java source code as
inputs. In addition, CFG4J focuses on generating
CFG for units using the corresponding AST of
these units. CFG4J employs a recursive method
to parse Java code blocks for building the required
CFG.

In 2006, Zaretsky et al. proposed a method
to generate the control and data flow graph from
the schedule and pipelined assembly code [26].
The method consists of three stages: generating
a control flow graph, linearizing the assembly
code, and generating the data flow graph. Sharing
the same interest as Zaretsky to generate CFG
for Java source code, CFG4J is different from
Zaretsky’s method in that Zaretsky’s method uses
the assembly code while CFG4J makes use of
Java unit source code to generate CFG.

In 2014, Pedro et al. proposed a method for
extracting CFGs incrementally from incomplete
Java byte code [27]. These CFGs are provably
sound with regard to sequences of method
invocations and exceptions. These generated
CFGs are suitable for many program analysis
methods such as model checking of temporal
control flow safety properties. The soundness
of these CFGs comes at the price of over-
approximation. Sometimes, it gives false positive
reports during verification. In addition, the
method supports incremental refinements of
the extracted models when the components are
evolved. Sharing the same interest as Zaretsky to
generate CFG for Java programs, CFG4J is based
on the source code directly and aims to CFGs
being used in other program analysis methods
such as test data generation methods or model-
based testing of the unit under check.

H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38 37

Table 5. Related works comparison

Paper Key point Limitations
CFG4J From Java unit source code Some statements are not supported yet

Zambon and
Rensink [22]

From recipes for the Java
program

- Self-constructed graph compiler
to generate AST
- To apply to newer version than Java 6,
the compiler must be upgraded

Jang-Wu and
Byeong-Mo [23]

Merging normal flow and
exception flows of CFG

- Not provide details about the CFG
construction process from source code

Afshin et al. [24, 25] From Java byte code The method is not based on Java source code

Zaretsky et al. [26]
From the schedule and
pipelined assembly code

The method is not based on Java source code

Pedro et al. [27]
From incomplete Java byte
code

- The method is not based on Java source code
- Can contain false positive

6. Conclusion

We have presented a method named CFG4J
for the CFG generation of Java units. The method
uses JDT libraries to generate the corresponding
AST of the given Java unit. Then, the AST is
used in the CFG generation process for three
main types of statements: sequence, condition,
and loop. The initial experimental results show
that the time and memory usage of CFG4J are
acceptable when being used as inputs for other
analysis methods.

Although CFG4J can generate CFG for the
three main common types of statements in Java
units, there is much work to do. First, we need
to perform more experiments with bigger Java
projects in practice to find out more special
statements that have not been processed. Second,
we are in the process of implementing other kinds
of analysis methods using CFGs as inputs such
as symbolic execution, test data generation, etc.
Finally, we are also implementing a friendlier
user interface for the tool so that other software
engineers and researchers can have a reference to
CFG4J. For this reason, we believe that CFG4J
will contribute more value to both the software
industry and researcher communities.

References

[1] D. A. Duffy, Principles of Automated Theorem
Proving, John Wiley & Sons, Inc., New York, NY,
USA, 1991.

[2] E. W. Dijkstra, Guarded Commands, Nondeterminacy
and Formal Derivation of Programs, Commun. ACM
18 (8) (1975) 453–457.

[3] C. A. R. Hoare, An Axiomatic Basis for Computer
Programming, Commun. ACM 12 (10) (1969) 576–
580.

[4] D. Kapur, M. Subramaniam, Lemma Discovery in
Automating Induction, in: M. A. McRobbie, J. K.
Slaney (Eds.), Automated Deduction — Cade-13,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1996,
pp. 538–552.

[5] M. Kaufmann, J. Moore, Some Key Research
Problems in Automated Theorem Proving for
Hardware and Software Verification 98 (2004)
181—-196.

[6] M. Sipser, Introduction to the Theory of Computation,
1st Edition, International Thomson Publishing, 1996.

[7] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie,
A. Petit, L. Petrucci, P. Schnoebelen, Systems and
Software Verification: Model-Checking Techniques
and Tools, 1st Edition, Springer Publishing Company,
Incorporated, 2010.

[8] E. M. Clarke, Jr., O. Grumberg, D. A. Peled, Model
Checking, MIT Press, Cambridge, MA, USA, 1999.

[9] L. Copeland, A Practitioner’s Guide to Software Test
Design, Artech House, Inc., USA, 2003.

[10] H.-V. Tran, P. N. Hung, V.-H. Nguyen, T. Aoki,
A Framework for Assume-Guarantee Regression

38 H. V. Tran, P. N. Hung / VNU Journal of Science: Comp. Science & Com. Eng., Vol. 40, No. 1 (2024) 18–38

Verification of Evolving Software, Science of
Computer Programming 193 (2020) 102439.
doi:https://doi.org/10.1016/j.scico.

2020.102439.
[11] H. Tran, P. N. Hung, V. H. Nguyen, On Locally

Minimum and Strongest Assumption Generation
Method for Component-Based Software Verification,
IEICE Trans. Inf. Syst. 102-D (8) (2019) 1449–1461.
doi:10.1587/transinf.2018FOP0004.

[12] J. M. Cobleigh, D. Giannakopoulou, C. S.
Păsăreanu, Learning Assumptions for Compositional
Verification, in: Proceedings of the 9th Int. Conf.
on Tools and Alg. for the Constr. and Anal. of Sys.,
TACAS’03, Springer-Verlag, Berlin, Heidelberg,
2003, pp. 331–346.

[13] D. Giannakopoulou, C. S. P"s"reanu, H. Barringer,
Assumption Generation for Software Component
Verification, in: Proceedings of the 17th IEEE
International Conference on Automated Software
Engineering, ASE ’02, IEEE Computer Society, USA,
2002, p. 3. doi:10.1109/ASE.2002.1114984.

[14] D.-A. Nguyen, P. N. Hung, A Test Data Generation
Method for C/C++ Projects, in: Proceedings of the
Eighth International Symposium on Information
and Communication Technology, SoICT 2017,
Association for Computing Machinery, New
York, NY, USA, 2017, p. 431–438. doi:https:

//doi.org/10.1145/3155133.3155144.
[15] D.-A. Nguyen, T. N. Huong, H. V. Dinh, P. N.

Hung, Improvements of Directed Automated Random
Testing in Test Data Generation for C++ Projects,
International Journal of Software Engineering and
Knowledge Engineering 29 (09) (2019) 1279–1312.
doi:10.1142/S0218194019500402.

[16] B. Botella, A. Gotlieb, C. Michel, Symbolic execution
of floating-point computations: Research Articles,
Softw. Test. Verif. Reliab. 16 (2) (2006) 97–121. doi:
10.5555/1133626.1133628.

[17] S. Khurshid, Y. L. Suen, Generalizing Symbolic
Execution to Library Classes, SIGSOFT Softw. Eng.
Notes 31 (1) (2005) 103–110. doi:https://doi.

org/10.1145/1108768.1108817.
[18] P. Godefroid, N. Klarlund, K. Sen, DART: Directed

Automated Random Testing, PLDI ’05, Association
for Computing Machinery, New York, NY, USA,
2005, p. 213–223. doi:https://doi.org/10.

1145/1064978.1065036.
[19] R. Gupta, M. L. Soffa, J. Howard, Hybrid

Slicing: Integrating Dynamic Information with
Static Analysis, ACM Trans. Softw. Eng.
Methodol. 6 (4) (1997) 370–397. doi:https:

//doi.org/10.1145/261640.261644.
[20] H. Cleve, A. Zeller, Locating Causes of Program

Failures, in: Proceedings of the 27th International

Conference on Software Engineering, ICSE ’05,
Association for Computing Machinery, New York,
NY, USA, 2005, p. 342–351. doi:https://doi.

org/10.1145/1062455.1062522.
[21] H. Nilsson, P. Fritzson, Lazy Algorithmic Debugging:

Ideas for Practical Implementation, in: P. A.
Fritzson (Ed.), Automated and Algorithmic
Debugging, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1993, pp. 117–134. doi:https:

//doi.org/10.1007/BFb0019405.
[22] E. Zambon, A. Rensink, Recipes for Coffee:

Compositional Construction of JAVA Control
Flow Graphs in GROOVE, Springer International
Publishing, Cham, 2018, pp. 305–323. doi:

10.1007/978-3-319-98047-8_19.
[23] J. Jo, B. Chang, Constructing Control Flow Graph

for Java by Decoupling Exception Flow from
Normal Flow, in: A. Laganà, M. L. Gavrilova,
V. Kumar, Y. Mun, C. J. K. Tan, O. Gervasi
(Eds.), Computational Science and Its Applications -
ICCSA 2004, International Conference, Assisi, Italy,
May 14-17, 2004, Proceedings, Part I, Vol. 3043 of
Lecture Notes in Computer Science, Springer, 2004,
pp. 106–113. doi:https://doi.org/10.1007/

978-3-540-24707-4_14.
[24] A. Amighi, P. de Carvalho Gomes, D. Gurov,

M. Huisman, Provably Correct Control Flow
Graphs from Java Bytecode Programs with
Exceptions, Int. J. Softw. Tools Technol.
Transf. 18 (6) (2016) 653–684. doi:https:

//doi.org/10.1007/s10009-015-0375-0.
[25] A. Amighi, P. de C. Gomes, D. Gurov, M. Huisman,

Sound Control-Flow Graph Extraction for Java
Programs with Exceptions, in: G. Eleftherakis,
M. Hinchey, M. Holcombe (Eds.), Software
Engineering and Formal Methods, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 33–47. doi:https://doi.org/10.1007/

978-3-642-33826-7_3.
[26] D. C. Zaretsky, G. Mittal, R. Dick, P. Banerjee,

Generation of Control and Data Flow Graphs
from Scheduled and Pipelined Assembly Code,
in: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers
for Parallel Computing, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 76–90. doi:https:

//doi.org/10.1007/978-3-540-69330-7_6.
[27] P. de Carvalho Gomes, A. Picoco, D. Gurov, Sound

Control Flow Graph Extraction from Incomplete Java
Bytecode Programs, in: S. Gnesi, A. Rensink (Eds.),
Fund. Approaches to Soft. Eng., Springer Berlin
Heidelberg, 2014, pp. 215–229. doi:10.1007/

978-3-642-54804-8_15.

http://dx.doi.org/https://doi.org/10.1016/j.scico.2020.102439
http://dx.doi.org/https://doi.org/10.1016/j.scico.2020.102439
http://dx.doi.org/10.1587/transinf.2018FOP0004
http://dx.doi.org/10.1109/ASE.2002.1114984
http://dx.doi.org/https://doi.org/10.1145/3155133.3155144
http://dx.doi.org/https://doi.org/10.1145/3155133.3155144
http://dx.doi.org/10.1142/S0218194019500402
http://dx.doi.org/10.5555/1133626.1133628
http://dx.doi.org/10.5555/1133626.1133628
http://dx.doi.org/https://doi.org/10.1145/1108768.1108817
http://dx.doi.org/https://doi.org/10.1145/1108768.1108817
http://dx.doi.org/https://doi.org/10.1145/1064978.1065036
http://dx.doi.org/https://doi.org/10.1145/1064978.1065036
http://dx.doi.org/https://doi.org/10.1145/261640.261644
http://dx.doi.org/https://doi.org/10.1145/261640.261644
http://dx.doi.org/https://doi.org/10.1145/1062455.1062522
http://dx.doi.org/https://doi.org/10.1145/1062455.1062522
http://dx.doi.org/https://doi.org/10.1007/BFb0019405
http://dx.doi.org/https://doi.org/10.1007/BFb0019405
http://dx.doi.org/10.1007/978-3-319-98047-8_19
http://dx.doi.org/10.1007/978-3-319-98047-8_19
http://dx.doi.org/https://doi.org/10.1007/978-3-540-24707-4_14
http://dx.doi.org/https://doi.org/10.1007/978-3-540-24707-4_14
http://dx.doi.org/https://doi.org/10.1007/s10009-015-0375-0
http://dx.doi.org/https://doi.org/10.1007/s10009-015-0375-0
http://dx.doi.org/https://doi.org/10.1007/978-3-642-33826-7_3
http://dx.doi.org/https://doi.org/10.1007/978-3-642-33826-7_3
http://dx.doi.org/https://doi.org/10.1007/978-3-540-69330-7_6
http://dx.doi.org/https://doi.org/10.1007/978-3-540-69330-7_6
http://dx.doi.org/10.1007/978-3-642-54804-8_15
http://dx.doi.org/10.1007/978-3-642-54804-8_15

	Introduction
	CFG4J Overview
	Generate the Corresponding Control Flow Graph for a Java Unit
	Generate CFG for A Java Unit
	Generate CFG for One Statement
	Generate CFG for |if| Statement
	Generate CFG for |for| Statement
	Generate CFG for |foreach| Statement
	Generate CFG for |while| Statement
	Generate CFG for |do| Statement
	Link continue, break, and return Statements
	Complexity
	An Example

	Experiments
	Experimental results
	Discussions
	Threats to Validity

	Related Works
	Conclusion

