Truong Nguyen Van, Hoai Nguyen Xuan, Mai Luong Chi

Main Article Content

Abstract

Artificial Immune System (AIS) is a multidisciplinary research area that combines the principles of immunology
and computation. Negative Selection Algorithms (NSA) is one of the most popular models of AIS mainly designed for one-class learning problems such as anomaly detection. Positive Selection Algorithms (PSA) is the twin brother of NSA with quite similar performance for AIS. Both NSAs and PSAs comprise of two phases: generating a set D of detectors from a given set S of selves (detector generation phase); and then detecting if a given cell (new data instace) is self or non-self using the generated detector set (detection phase). In this paper, we propose a novel approach to combining NSAs and PSAs that employ binary representation and r-chunk matching rule. The new algorithm achieves smaller detector storage complexity and potentially better detection time in comparison with single NSAs or PSAs.